Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Alzheimer's fuzzy signals into high definition

08.05.2013
Virginia Tech scientists bring clarity to how most Alzheimer's drugs sharpen brain performance

Scientists at the Virginia Tech Carilion Research Institute have discovered how the predominant class of Alzheimer's pharmaceuticals might sharpen the brain's performance

One factor even more important than the size of a television screen is the quality of the signal it displays. Having a life-sized projection of Harry Potter dodging a Bludger in a Quidditch match is of little use if the details are lost to pixilation.

The importance of transmitting clear signals, however, is not relegated to the airwaves. The same creed applies to the electrical impulses navigating a human brain. Now, new research has shown that one of the few drugs approved for the treatment of Alzheimer's disease helps patients by clearing up the signals coming in from the outside world.

The discovery was made by a team of researchers led by Rosalyn Moran, an assistant professor at the Virginia Tech Carilion Research Institute. Her study indicates that cholinesterase inhibitors — a class of drugs that stop the breakdown of the neurotransmitter acetylcholine — allow signals to enter the brain with more precision and less background noise.

"Increasing the levels of acetylcholine appears to turn your fuzzy, old analog TV signal into a shiny, new, high-definition one," said Moran, who holds an appointment as an assistant professor in the Virginia Tech College of Engineering. "And the drug does this in the sensory cortices. These are the workhorses of the brain, the gatekeepers, not the more sophisticated processing regions — such as the prefrontal cortex — where one may have expected the drugs to have their most prominent effect."

Alzheimer's disease affects more than 35 million people worldwide — a number expected to double every 20 years, leading to more than 115 million cases by 2050. Of the five pharmaceuticals approved to treat the disease by the U.S. Food and Drug Administration, four are cholinesterase inhibitors. Although it is clear that the drugs increase the amount of acetylcholine in the brain, why this improves Alzheimer's symptoms has been unknown. If scientists understood the mechanisms and pathways responsible for improvement, they might be able to tailor better drugs to combat the disease, which costs more than $200 billion annually in the United States alone.

In the new study, Moran recruited 13 healthy young adults and gave them doses of galantamine, one of the cholinesterase inhibitors commonly prescribed to Alzheimer's patients. Two electroencephalographs were taken — one with the drugs and one without — as the participants listened to a series of modulating tones while focusing on a simple concentration task.

The researchers were looking for differences in neural activity between the two drug states in response to surprising changes in the sound patterns that the participants were hearing.

The scientists compared the results with computer models built on a Bayesian brain theory, known as the Free Energy Principle, which is a leading theory that describes the basic rules of neuronal communication and explains the creation of complex networks.

The theory hypothesizes that neurons seek to reduce uncertainty, which can be modeled and calculated using free energy molecular dynamics. Connecting tens of thousands of neurons behaving in this manner produces the probability machine that we call a brain.

Moran and her colleagues compiled 10 computer simulations based on the different effects that the drugs could have on the brain. The model that best fit the results revealed that the low-level wheels of the brain early on in the neural networking process were the ones benefitting from the drugs and creating clearer, more precise signals.

"When people take these drugs you can imagine the brain bathed in them," Moran said. "But what we found is that the drugs don't have broad-stroke impacts on brain activity. Instead, they are working very specifically at the cortex's entry points, gating the signals coming into the network in the first place."

The study appears in Wednesday's (May 8) issue of the Journal of Neuroscience in the article, "Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation."

News release by Ken Kingery

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>