Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Alzheimer's fuzzy signals into high definition

08.05.2013
Virginia Tech scientists bring clarity to how most Alzheimer's drugs sharpen brain performance

Scientists at the Virginia Tech Carilion Research Institute have discovered how the predominant class of Alzheimer's pharmaceuticals might sharpen the brain's performance

One factor even more important than the size of a television screen is the quality of the signal it displays. Having a life-sized projection of Harry Potter dodging a Bludger in a Quidditch match is of little use if the details are lost to pixilation.

The importance of transmitting clear signals, however, is not relegated to the airwaves. The same creed applies to the electrical impulses navigating a human brain. Now, new research has shown that one of the few drugs approved for the treatment of Alzheimer's disease helps patients by clearing up the signals coming in from the outside world.

The discovery was made by a team of researchers led by Rosalyn Moran, an assistant professor at the Virginia Tech Carilion Research Institute. Her study indicates that cholinesterase inhibitors — a class of drugs that stop the breakdown of the neurotransmitter acetylcholine — allow signals to enter the brain with more precision and less background noise.

"Increasing the levels of acetylcholine appears to turn your fuzzy, old analog TV signal into a shiny, new, high-definition one," said Moran, who holds an appointment as an assistant professor in the Virginia Tech College of Engineering. "And the drug does this in the sensory cortices. These are the workhorses of the brain, the gatekeepers, not the more sophisticated processing regions — such as the prefrontal cortex — where one may have expected the drugs to have their most prominent effect."

Alzheimer's disease affects more than 35 million people worldwide — a number expected to double every 20 years, leading to more than 115 million cases by 2050. Of the five pharmaceuticals approved to treat the disease by the U.S. Food and Drug Administration, four are cholinesterase inhibitors. Although it is clear that the drugs increase the amount of acetylcholine in the brain, why this improves Alzheimer's symptoms has been unknown. If scientists understood the mechanisms and pathways responsible for improvement, they might be able to tailor better drugs to combat the disease, which costs more than $200 billion annually in the United States alone.

In the new study, Moran recruited 13 healthy young adults and gave them doses of galantamine, one of the cholinesterase inhibitors commonly prescribed to Alzheimer's patients. Two electroencephalographs were taken — one with the drugs and one without — as the participants listened to a series of modulating tones while focusing on a simple concentration task.

The researchers were looking for differences in neural activity between the two drug states in response to surprising changes in the sound patterns that the participants were hearing.

The scientists compared the results with computer models built on a Bayesian brain theory, known as the Free Energy Principle, which is a leading theory that describes the basic rules of neuronal communication and explains the creation of complex networks.

The theory hypothesizes that neurons seek to reduce uncertainty, which can be modeled and calculated using free energy molecular dynamics. Connecting tens of thousands of neurons behaving in this manner produces the probability machine that we call a brain.

Moran and her colleagues compiled 10 computer simulations based on the different effects that the drugs could have on the brain. The model that best fit the results revealed that the low-level wheels of the brain early on in the neural networking process were the ones benefitting from the drugs and creating clearer, more precise signals.

"When people take these drugs you can imagine the brain bathed in them," Moran said. "But what we found is that the drugs don't have broad-stroke impacts on brain activity. Instead, they are working very specifically at the cortex's entry points, gating the signals coming into the network in the first place."

The study appears in Wednesday's (May 8) issue of the Journal of Neuroscience in the article, "Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation."

News release by Ken Kingery

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>