Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Alzheimer's fuzzy signals into high definition

08.05.2013
Virginia Tech scientists bring clarity to how most Alzheimer's drugs sharpen brain performance

Scientists at the Virginia Tech Carilion Research Institute have discovered how the predominant class of Alzheimer's pharmaceuticals might sharpen the brain's performance

One factor even more important than the size of a television screen is the quality of the signal it displays. Having a life-sized projection of Harry Potter dodging a Bludger in a Quidditch match is of little use if the details are lost to pixilation.

The importance of transmitting clear signals, however, is not relegated to the airwaves. The same creed applies to the electrical impulses navigating a human brain. Now, new research has shown that one of the few drugs approved for the treatment of Alzheimer's disease helps patients by clearing up the signals coming in from the outside world.

The discovery was made by a team of researchers led by Rosalyn Moran, an assistant professor at the Virginia Tech Carilion Research Institute. Her study indicates that cholinesterase inhibitors — a class of drugs that stop the breakdown of the neurotransmitter acetylcholine — allow signals to enter the brain with more precision and less background noise.

"Increasing the levels of acetylcholine appears to turn your fuzzy, old analog TV signal into a shiny, new, high-definition one," said Moran, who holds an appointment as an assistant professor in the Virginia Tech College of Engineering. "And the drug does this in the sensory cortices. These are the workhorses of the brain, the gatekeepers, not the more sophisticated processing regions — such as the prefrontal cortex — where one may have expected the drugs to have their most prominent effect."

Alzheimer's disease affects more than 35 million people worldwide — a number expected to double every 20 years, leading to more than 115 million cases by 2050. Of the five pharmaceuticals approved to treat the disease by the U.S. Food and Drug Administration, four are cholinesterase inhibitors. Although it is clear that the drugs increase the amount of acetylcholine in the brain, why this improves Alzheimer's symptoms has been unknown. If scientists understood the mechanisms and pathways responsible for improvement, they might be able to tailor better drugs to combat the disease, which costs more than $200 billion annually in the United States alone.

In the new study, Moran recruited 13 healthy young adults and gave them doses of galantamine, one of the cholinesterase inhibitors commonly prescribed to Alzheimer's patients. Two electroencephalographs were taken — one with the drugs and one without — as the participants listened to a series of modulating tones while focusing on a simple concentration task.

The researchers were looking for differences in neural activity between the two drug states in response to surprising changes in the sound patterns that the participants were hearing.

The scientists compared the results with computer models built on a Bayesian brain theory, known as the Free Energy Principle, which is a leading theory that describes the basic rules of neuronal communication and explains the creation of complex networks.

The theory hypothesizes that neurons seek to reduce uncertainty, which can be modeled and calculated using free energy molecular dynamics. Connecting tens of thousands of neurons behaving in this manner produces the probability machine that we call a brain.

Moran and her colleagues compiled 10 computer simulations based on the different effects that the drugs could have on the brain. The model that best fit the results revealed that the low-level wheels of the brain early on in the neural networking process were the ones benefitting from the drugs and creating clearer, more precise signals.

"When people take these drugs you can imagine the brain bathed in them," Moran said. "But what we found is that the drugs don't have broad-stroke impacts on brain activity. Instead, they are working very specifically at the cortex's entry points, gating the signals coming into the network in the first place."

The study appears in Wednesday's (May 8) issue of the Journal of Neuroscience in the article, "Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation."

News release by Ken Kingery

Paula Byron | EurekAlert!
Further information:
http://www.vt.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>