Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumors Grow Faster Without Blood-Supply Promoting Molecule

11.11.2008
Dense networks of blood vessels thought to spur cancer’s growth could actually hinder rather than promote tumor progression, according to a new study at the University of California, San Diego.

The findings partly explain why drugs designed to treat cancer by strangling its blood supply have been disappointing when used alone and why those treatments are more effective when combined with traditional chemotherapy.

Despite their rapid progression, tumors fed by more normal vascular were also more vulnerable to the effects of standard chemotherapy drugs, the team reports in this week’s early online edition of the journal Nature.

Nascent tumors take off as new blood vessels invade, an event called angiogenesis that many see as key to the development of malignancy. But those pathological vessels form tangled structures that are far from normal.

“Tumor blood vessels become more chaotic, disorganized and leaky,” said Randall S. Johnson, professor of molecular biology at UC San Diego who led the study. “They become dysfunctional in many ways as a blood vessel network.”

Cellular secretions within tumors promote the invasion. The first drugs designed to curtail cancer’s blood supply targeted one of these, called VEGF for vascular endothelial growth factor. Inflammatory cells, which infiltrate many types of tumors, provide one source of VEGF.

Johnson’s team created a strain of mice in which most inflammatory cells were missing the gene for VEGF, then cross-bred them with a strain that reliably develops mammary tumors and is commonly used to study breast cancer.

“The blood vessels look more organized and less leaky in the engineered mice,” said Christian Stockmann, a molecular biology postdoctoral fellow and the first author of the paper.

The blood supply to tumors in these mice was also sparse compared to mice with intact VEGF genes.

“A lot of these classic hallmarks of tumor blood vessels disappeared when the inflammatory cells couldn’t make VEGF,” Johnson said.

But the cancer grew faster.

All of the mice developed tumors, but at 20 weeks of age, those with low levels of VEGF from inflammatory cells had larger growths that were more likely to have progressed to a later stage of cancer.

“The tumors seemed much happier when they didn’t have this chaotic vasculature,” Johnson said.

The scientists also injected a cancerous cell line into normal and engineered mice and found that the introduced cells invaded normal tissues more readily without VEGF from inflammatory cells and developed more normal blood supplies.

The tumors that formed were also more susceptible to two different chemotherapy drugs in the mice lacking VEGF from inflammatory cells.

By identifying the cellular source of the critical factor for one pathology associated with cancer, the researchers say their findings may open new avenues for treatment.

The National Institutes of Health funded the research.

Randall Johnson | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>