Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor tracking technique may improve outcomes for lung cancer patients

20.11.2012
Real-time approach tracks and radiates moving tumors and spares healthy tissue

Medical physicists at Thomas Jefferson University and Jefferson's Kimmel Cancer Center are one step closer to bringing a new tumor-tracking technique into the clinic that delivers higher levels of radiation to moving tumors, while sparing healthy tissue in lung cancer patients.

Evidence has shown a survival advantage for lung cancer patients treated with higher doses of radiation. Therefore, there is an increased interest to find novel ways to better track tumors—which are in constant motion because of breathing—in order to up the dosage during radiation therapy without increasing harmful side effects

After proving its success in simulations, researchers have now shown that their real-time tracking technique can achieve such tasks. Not only can it better predict and track tumor motion and deliver higher levels of radiation to lung cancer patients and others with moving tumor targets, it can also successfully be implemented into existing clinical equipment (i.e., Elekta Precise Table).

The results of the study, led by Ivan Buzurovic, Ph.D., a medical physics resident and researcher in the Department of Radiation Oncology at Thomas Jefferson University, and Yan Yu, Ph.D., Professor, Vice Chair and Director of Medical Physics at Thomas Jefferson University, were published in the November issue of Medical Physics.

"We've shown here that our system can better predict and continuously track moving tumors during radiotherapy, preventing unnecessary amounts of radiation from being administered to unnecessary areas," said Dr. Buzurovic. "Just as important, we've successfully modified existing technology to integrate with the system to perform the tracking and delivery, meaning no additional robotic systems is needed."

Respiratory and cardiac motions have been found to displace and deform tumors in the lung and other organs. Because of this, radiation oncologists must expand the margin during radiotherapy, and consequently a large volume of healthy tissue is irradiated, and critical organs adjacent to the tumor are sometimes difficult to spare.

In an effort to shrink that margin, Jefferson researchers developed a new, robotic technique that better tracks tumor motion to deliver more precise radiation.

Here, the researchers applied a new control system (software and hardware) and robotic technology to existing treatment couches used for radiation therapy to determine the tracking technology's feasibility in a clinical setting.

They found the technology can be integrated onto treatment couches and validated the tumor tracking system capabilities to follow desired trajectories. When the active tracking system was applied, irradiated planning target volume (the area set for treatment) was 20 to 30 percent less for medium size tumors and more than 50 percent for small size tumors.

"The use of tumor tracking technology during radiotherapy treatment for lung cancer would result in significant reduction in dose to critical organs and tissue, potentially decreasing the probability or severity of side effects, and thus improving cancer treatments," Dr. Yu said.

Based on these results, it can be hypothesized that clinical implementation of real-time tracking is feasible for achieving potentially improved patient outcome.

"With this new technique, it shrinks the margin, and radiation oncologists would be able to administer more radiation and faster to the tumor than conventional methods," said Adam P. Dicker, M.D, Ph.D., Professor and Chairman of the Department of Radiation Oncology at Thomas Jefferson University. "And a higher, more targeted dose means a better cure in lung cancer."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>