Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor tracking technique may improve outcomes for lung cancer patients

20.11.2012
Real-time approach tracks and radiates moving tumors and spares healthy tissue

Medical physicists at Thomas Jefferson University and Jefferson's Kimmel Cancer Center are one step closer to bringing a new tumor-tracking technique into the clinic that delivers higher levels of radiation to moving tumors, while sparing healthy tissue in lung cancer patients.

Evidence has shown a survival advantage for lung cancer patients treated with higher doses of radiation. Therefore, there is an increased interest to find novel ways to better track tumors—which are in constant motion because of breathing—in order to up the dosage during radiation therapy without increasing harmful side effects

After proving its success in simulations, researchers have now shown that their real-time tracking technique can achieve such tasks. Not only can it better predict and track tumor motion and deliver higher levels of radiation to lung cancer patients and others with moving tumor targets, it can also successfully be implemented into existing clinical equipment (i.e., Elekta Precise Table).

The results of the study, led by Ivan Buzurovic, Ph.D., a medical physics resident and researcher in the Department of Radiation Oncology at Thomas Jefferson University, and Yan Yu, Ph.D., Professor, Vice Chair and Director of Medical Physics at Thomas Jefferson University, were published in the November issue of Medical Physics.

"We've shown here that our system can better predict and continuously track moving tumors during radiotherapy, preventing unnecessary amounts of radiation from being administered to unnecessary areas," said Dr. Buzurovic. "Just as important, we've successfully modified existing technology to integrate with the system to perform the tracking and delivery, meaning no additional robotic systems is needed."

Respiratory and cardiac motions have been found to displace and deform tumors in the lung and other organs. Because of this, radiation oncologists must expand the margin during radiotherapy, and consequently a large volume of healthy tissue is irradiated, and critical organs adjacent to the tumor are sometimes difficult to spare.

In an effort to shrink that margin, Jefferson researchers developed a new, robotic technique that better tracks tumor motion to deliver more precise radiation.

Here, the researchers applied a new control system (software and hardware) and robotic technology to existing treatment couches used for radiation therapy to determine the tracking technology's feasibility in a clinical setting.

They found the technology can be integrated onto treatment couches and validated the tumor tracking system capabilities to follow desired trajectories. When the active tracking system was applied, irradiated planning target volume (the area set for treatment) was 20 to 30 percent less for medium size tumors and more than 50 percent for small size tumors.

"The use of tumor tracking technology during radiotherapy treatment for lung cancer would result in significant reduction in dose to critical organs and tissue, potentially decreasing the probability or severity of side effects, and thus improving cancer treatments," Dr. Yu said.

Based on these results, it can be hypothesized that clinical implementation of real-time tracking is feasible for achieving potentially improved patient outcome.

"With this new technique, it shrinks the margin, and radiation oncologists would be able to administer more radiation and faster to the tumor than conventional methods," said Adam P. Dicker, M.D, Ph.D., Professor and Chairman of the Department of Radiation Oncology at Thomas Jefferson University. "And a higher, more targeted dose means a better cure in lung cancer."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Zinc Deficiency Linked to Activation of Hedgehog Signaling Pathway
20.04.2015 | Rensselaer Polytechnic Institute (RPI)

nachricht UV light robot to clean hospital rooms could help stop spread of 'superbugs'
15.04.2015 | Texas A&M University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015 | Physics and Astronomy

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015 | Architecture and Construction

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>