Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor tracking technique may improve outcomes for lung cancer patients

20.11.2012
Real-time approach tracks and radiates moving tumors and spares healthy tissue

Medical physicists at Thomas Jefferson University and Jefferson's Kimmel Cancer Center are one step closer to bringing a new tumor-tracking technique into the clinic that delivers higher levels of radiation to moving tumors, while sparing healthy tissue in lung cancer patients.

Evidence has shown a survival advantage for lung cancer patients treated with higher doses of radiation. Therefore, there is an increased interest to find novel ways to better track tumors—which are in constant motion because of breathing—in order to up the dosage during radiation therapy without increasing harmful side effects

After proving its success in simulations, researchers have now shown that their real-time tracking technique can achieve such tasks. Not only can it better predict and track tumor motion and deliver higher levels of radiation to lung cancer patients and others with moving tumor targets, it can also successfully be implemented into existing clinical equipment (i.e., Elekta Precise Table).

The results of the study, led by Ivan Buzurovic, Ph.D., a medical physics resident and researcher in the Department of Radiation Oncology at Thomas Jefferson University, and Yan Yu, Ph.D., Professor, Vice Chair and Director of Medical Physics at Thomas Jefferson University, were published in the November issue of Medical Physics.

"We've shown here that our system can better predict and continuously track moving tumors during radiotherapy, preventing unnecessary amounts of radiation from being administered to unnecessary areas," said Dr. Buzurovic. "Just as important, we've successfully modified existing technology to integrate with the system to perform the tracking and delivery, meaning no additional robotic systems is needed."

Respiratory and cardiac motions have been found to displace and deform tumors in the lung and other organs. Because of this, radiation oncologists must expand the margin during radiotherapy, and consequently a large volume of healthy tissue is irradiated, and critical organs adjacent to the tumor are sometimes difficult to spare.

In an effort to shrink that margin, Jefferson researchers developed a new, robotic technique that better tracks tumor motion to deliver more precise radiation.

Here, the researchers applied a new control system (software and hardware) and robotic technology to existing treatment couches used for radiation therapy to determine the tracking technology's feasibility in a clinical setting.

They found the technology can be integrated onto treatment couches and validated the tumor tracking system capabilities to follow desired trajectories. When the active tracking system was applied, irradiated planning target volume (the area set for treatment) was 20 to 30 percent less for medium size tumors and more than 50 percent for small size tumors.

"The use of tumor tracking technology during radiotherapy treatment for lung cancer would result in significant reduction in dose to critical organs and tissue, potentially decreasing the probability or severity of side effects, and thus improving cancer treatments," Dr. Yu said.

Based on these results, it can be hypothesized that clinical implementation of real-time tracking is feasible for achieving potentially improved patient outcome.

"With this new technique, it shrinks the margin, and radiation oncologists would be able to administer more radiation and faster to the tumor than conventional methods," said Adam P. Dicker, M.D, Ph.D., Professor and Chairman of the Department of Radiation Oncology at Thomas Jefferson University. "And a higher, more targeted dose means a better cure in lung cancer."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>