Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor target suggests personalized treatment for melanoma

16.06.2010
Identification of a key player in a signaling pathway involved in the development of melanoma – the deadliest form of skin cancer – may offer hope for new targeted melanoma therapies.

Ann Richmond, Ph.D., and colleagues at Vanderbilt-Ingram Cancer Center report that a signaling molecule, known as IKKâ, is essential for melanoma tumor development in a mouse model of the disease. The results, published June 7 in the Journal of Clinical Investigation, also point to ways of targeting therapies that inhibit IKKâ toward the patients most likely to benefit from them based on their genetic profile.

Melanoma is the deadliest form of skin cancer and incredibly difficult to treat successfully once the tumor has spread beyond the skin.

Prior studies have shown that the NF-êB signaling pathway – centered on the protein NF-êB, which regulates gene expression – is abnormally activated in tumor cells; the pathway is turned "on" constantly, even at times it should be turned "off." This activation often results from abnormal activation of another enzyme in the pathway, IKKâ.

Just how NF-êB contributes to tumor progression has been unclear. And with drugs that inhibit this pathway entering clinical trials, a clearer picture of its function in tumor progression is needed.

To better understand the role of this pathway – in particular, of IKKâ's role – Richmond's lab developed a mouse model that mimics the genetic alterations involved in melanoma development in humans.

Jinming Yang, Ph.D., a staff scientist in Richmond's lab, led the effort to generate these mice, which lack the tumor suppressor INK4a/ARF (commonly lost in melanomas) and have the Ras/Raf pathway activated (which is activated in about 70 percent of melanoma lesions).

The researchers then added the ability to "turn off" IKKâ only in melanocytes, the pigment-producing skin cells in which melanomas initiate, simply by treating the mice with an antibiotic.

Mice with normal IKKâ activity developed "loads and loads of melanoma tumors all over their bodies…on the tail, the ear, and anywhere melanocytes are," said Richmond, an Ingram Professor of Cancer Biology at Vanderbilt University Medical Center and a senior career research scientist with the Department of Veterans Affairs.

But mice in which IKKâ was "turned off" developed no melanoma tumors.

They also found that treating mice with normal IKKâ activity with small molecule inhibitors of the enzyme could inhibit the growth of melanoma lesions.

"This shows for the first time that you have to have IKKâ for Ras-induced melanoma, suggesting that there's a way to specifically target melanoma lesions," she said.

However, the experiments identified an important caveat: blocking IKKâ only seemed to protect against melanoma formation when another tumor suppressor, p53, is expressed.

Since mutations that disrupt p53 are sometimes found in melanomas, this suggests that therapies targeting IKKâ or the NF-êB pathway in general would need to be limited to tumors with normal p53.

Richmond cautions, "With NF-êB inhibitors entering clinical trials at this time, it is imperative that these data be taken into consideration for patient selection or evaluation of response in these trials."

Richmond is collaborating with Vanderbilt-Ingram Cancer Center investigators Mark Kelley, M.D., and Jeffrey Sosman, M.D., to identify, in human tumor samples, which tumors would respond to targeted inhibitors of the Ras/Raf and NF-êB pathways.

Such information could aid in diagnosis and "be used to deliver personalized medicine" to melanoma patients in the future, she said.

"We're passionate about (IKKâ inhibitors) possibly going forward, maybe not as a single agent, but in combination (treatments). As we are able to better predict which patients will respond to which drugs, there's real hope there."

Richmond is also a professor of Medicine in the Division of Dermatology. Other authors on the study include: Ryan Splittgerber, Ph.D., Fiona Yull, D.Phil., Sara Kantrow, Gregory Ayers from Vanderbilt, and Michael Karin, Ph.D., from the University of California San Diego. The research was supported by the Department of Veterans Affairs, the National Institutes of Health, the Skin Disease Research Center and the Vanderbilt-Ingram Cancer Center.

Dagny Stuart | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>