Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor target suggests personalized treatment for melanoma

16.06.2010
Identification of a key player in a signaling pathway involved in the development of melanoma – the deadliest form of skin cancer – may offer hope for new targeted melanoma therapies.

Ann Richmond, Ph.D., and colleagues at Vanderbilt-Ingram Cancer Center report that a signaling molecule, known as IKKâ, is essential for melanoma tumor development in a mouse model of the disease. The results, published June 7 in the Journal of Clinical Investigation, also point to ways of targeting therapies that inhibit IKKâ toward the patients most likely to benefit from them based on their genetic profile.

Melanoma is the deadliest form of skin cancer and incredibly difficult to treat successfully once the tumor has spread beyond the skin.

Prior studies have shown that the NF-êB signaling pathway – centered on the protein NF-êB, which regulates gene expression – is abnormally activated in tumor cells; the pathway is turned "on" constantly, even at times it should be turned "off." This activation often results from abnormal activation of another enzyme in the pathway, IKKâ.

Just how NF-êB contributes to tumor progression has been unclear. And with drugs that inhibit this pathway entering clinical trials, a clearer picture of its function in tumor progression is needed.

To better understand the role of this pathway – in particular, of IKKâ's role – Richmond's lab developed a mouse model that mimics the genetic alterations involved in melanoma development in humans.

Jinming Yang, Ph.D., a staff scientist in Richmond's lab, led the effort to generate these mice, which lack the tumor suppressor INK4a/ARF (commonly lost in melanomas) and have the Ras/Raf pathway activated (which is activated in about 70 percent of melanoma lesions).

The researchers then added the ability to "turn off" IKKâ only in melanocytes, the pigment-producing skin cells in which melanomas initiate, simply by treating the mice with an antibiotic.

Mice with normal IKKâ activity developed "loads and loads of melanoma tumors all over their bodies…on the tail, the ear, and anywhere melanocytes are," said Richmond, an Ingram Professor of Cancer Biology at Vanderbilt University Medical Center and a senior career research scientist with the Department of Veterans Affairs.

But mice in which IKKâ was "turned off" developed no melanoma tumors.

They also found that treating mice with normal IKKâ activity with small molecule inhibitors of the enzyme could inhibit the growth of melanoma lesions.

"This shows for the first time that you have to have IKKâ for Ras-induced melanoma, suggesting that there's a way to specifically target melanoma lesions," she said.

However, the experiments identified an important caveat: blocking IKKâ only seemed to protect against melanoma formation when another tumor suppressor, p53, is expressed.

Since mutations that disrupt p53 are sometimes found in melanomas, this suggests that therapies targeting IKKâ or the NF-êB pathway in general would need to be limited to tumors with normal p53.

Richmond cautions, "With NF-êB inhibitors entering clinical trials at this time, it is imperative that these data be taken into consideration for patient selection or evaluation of response in these trials."

Richmond is collaborating with Vanderbilt-Ingram Cancer Center investigators Mark Kelley, M.D., and Jeffrey Sosman, M.D., to identify, in human tumor samples, which tumors would respond to targeted inhibitors of the Ras/Raf and NF-êB pathways.

Such information could aid in diagnosis and "be used to deliver personalized medicine" to melanoma patients in the future, she said.

"We're passionate about (IKKâ inhibitors) possibly going forward, maybe not as a single agent, but in combination (treatments). As we are able to better predict which patients will respond to which drugs, there's real hope there."

Richmond is also a professor of Medicine in the Division of Dermatology. Other authors on the study include: Ryan Splittgerber, Ph.D., Fiona Yull, D.Phil., Sara Kantrow, Gregory Ayers from Vanderbilt, and Michael Karin, Ph.D., from the University of California San Diego. The research was supported by the Department of Veterans Affairs, the National Institutes of Health, the Skin Disease Research Center and the Vanderbilt-Ingram Cancer Center.

Dagny Stuart | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>