Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor surroundings are shown to affect progression of different cancer subtypes

28.05.2015

Treatments may need to be tailored not just to specific cancer types but also to factors distinguishing environments in which they develop

Our environment can have a major impact on how we develop, and it turns out it's no different for cancer cells. In work published today in Neoplasia, a team of researchers led by Associate Professor Mikala Egeblad at Cold Spring Harbor Laboratory (CSHL) found that two different mouse models of breast cancer progressed differently based on characteristics of the tumor microenvironment - the area of tissue in which the tumor is embedded.


Mikala Egeblad's team showed in mice that the progression of different types of breast cancer was influenced differently by the tissue -- the so-called tumor microenvironment -- in which the tumor is embedded. The tumor microenvironment contains many factors, including immune cells and blood vessels, that communicate with cancer cells and can promote tumor growth. On the left, a breast cancer type called luminal; on the right, a type called triple-negative/basal. The luminal microenvironment has less fibrosis (scar tissue, colored purple) and contains few inflammatory cells embedded within these fibrotic areas or in the surrounding fatty tissue (white). The triple-negative microenvironment contains more inflammatory cells and more fibrosis. Targeting a protein called MMP9, which promotes cancer and is linked with poor prognosis, slowed the course of the triple-negative/basal breast cancer, the one with the more profoundly altered microenvironment, but had no impact on the luminal cancer.

Credit: Egeblad Lab, CSHL

The tumor microenvironment includes cells and extracellular molecules that support the tumor's growth. Egeblad and her team looked at two types of breast cancer driven by different mutations, and found very different microenvironments. One common factor was the presence of an extracellular protein called matrix metalloproteinase 9 (MMP9). It was expressed at similar levels in tumors from both breast cancer mouse models.

MMP9 previously has been linked to the progression of many types of cancers. When the researchers deleted the Mmp9 gene, they found that the absence of the MMP9 protein delayed tumor onset only in one mouse model, and had no effect in the other model.

Egeblad and her team found that whether MMP9 promoted cancer or not depended on the tumor microenvironment. Specifically, on the presence of another molecule that MMP9 is known to act on, called insulin-like growth factor binding protein 1 (IGFBP-1). "If IGFBP-1 is not there, MMP9 didn't really have an effect, but if it's there, then MMP9 has a role," says Egeblad. This suggests that IGFBP-1 interacts with MMP9 to promote tumor formation.

IGFBP-1 binds insulin-like growth factors (IGFs), which play a role in promoting cancer proliferation. "IGFBP-1 keeps the growth factors sequestered so they can't act on the cancer cells and can't make them proliferate," Egeblad says. "But if MMP9 is present, it degrades these IGFBPs and releases the growth factors." The release of the IGFs then accelerates cancer progression.

Egeblad and her team looked in human cancer databases to see if the interaction between MMP9 and IGFBPs predicted breast cancer prognosis in humans. "We found that IGF-binding proteins are associated with a good prognosis, but if MMP9 is also present, there's no longer good association with survival," Egeblad says.

The study's results have implications for anti-cancer drugs that target MMPs, and may explain why previous clinical trials using MMP inhibitors have failed, Egeblad says. "Maybe you can actually think about using these inhibitors if you better understand their biology," she says. The new study suggests that trials of MMP inhibitors could focus on patients whose tumor microenvironment contains IGFBPs, she says.

More broadly, the research suggests that it may not be enough to see if a particular drug target is present in a certain type of cancer; researchers may also need to look for the presence of the molecules that the drug target acts upon. "It complicates things, but I think biologically it makes a lot of sense. You really need to dig deep and understand mechanistically what the target does," Egeblad says.

The lab's next goal is to look more generally at the differences in microenvironments in different types of cancer. "What we're starting to learn now is that the microenvironments are different in different tumors, and that there is really a very intricate interplay between what's driving the mutations in cancer cells and the type of microenvironment they build around themselves," Egeblad says.

###

This work was supported by funds from the NIH (R01CA057621), the Breast Cancer Alliance, the Long Island 2 Day Walk to Fight Breast Cancer, the Manhasset Women's Coalition Against Breast Cancer, the University of Copenhagen, the Augustinus Fonden, the Dagmar Marshalls Fond, the European Association for Cancer Research, and a postdoctoral fellowship from the U.S. Department of Defense Breast Cancer Research Program.

"Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer " appears online in Neoplasia on May 27, 2105, 2015. The authors are: Jae-Hyun Park, Ph.D.; Morten G Rasch, Ph.D.; Jing Qiu; Ida K Lund, Ph.D.; Mikala Egeblad. The paper can be obtained online at: http://neoplasia.org/article/S1476-5586(15)00047-0/fulltext

About Cold Spring Harbor Laboratory

Celebrating its 125th anniversary in 2015, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory is more than 600 researchers and technicians strong. The Meetings & Courses Program hosts more than 12,000 scientists from around the world each year on its campuses in Long Island and in Suzhou, China. The Laboratory's education arm also includes an academic publishing house, a graduate school and programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Media Contact

Peter Tarr
tarr@cshl.edu
516-367-8455

 @CSHLnews

http://www.cshl.edu 

Peter Tarr | EurekAlert!

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>