Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor measurements predict survival in advanced non-small cell lung cancer

20.08.2013
For the two-thirds of lung cancer patients with locally advanced or metastatic disease, tumor size is not used currently to predict overall survival times.

A new study, however, led by UT Southwestern Medical Center researchers has shown that even in advanced stages total tumor size can have a major impact on survival.

Using data from a National Cancer Institute-sponsored Phase 3 trial involving 850 patients with advanced lung cancer, Dr. David Gerber, assistant professor of internal medicine at UT Southwestern, and colleagues from other academic medical centers reviewed the recorded total tumor dimensions – which may include not only the primary tumor, but also those in lymph nodes and other sites of metastatic disease. Dr. Gerber’s team found that total tumor measurements greater than 3 inches predicted shorter survival times.

“The traditional view is that once a cancer has spread to the lymph nodes or to other organs, tumor dimensions are unlikely to affect patient outcomes,” explained Dr. Gerber, a member of the Harold C. Simmons Comprehensive Cancer Center and lead author of the study. “However, the survival differences we found are not only statistically significant, but also clinically meaningful.”

In the study, published online in the British Journal of Cancer, the average total tumor dimension was 7.5 centimeters, or roughly 3 inches. Patients with total tumor dimensions above this size lived an average of 9.5 months. Patients with total dimensions below 7.5 centimeters lived an average of 12.6 months, representing a 30 percent increase in survival.

When total tumor dimension was further divided into quartiles, the survival differences were even greater, ranging from 8.5 months to 13.3 months. These differences persisted even when multiple prognostic factors, such as age, gender, and type of treatment, were included in the analysis.

Dr. Gerber explained that, if confirmed in other populations, these findings could affect future clinical trials and patient care.

“Ultimately, clinical researchers might consider this information as they review outcome data, making sure survival differences are attributed to treatment effects and not to baseline differences in total tumor dimensions,” he said. “Practicing physicians may also use the information to estimate prognosis.”

Precise measurements of lung cancer tumors can be used in tailoring therapy and helping doctors steer patients to the best clinical trials, he added.

While the study did not seek to explain the biological reasons why this size association may hold true, a number of preclinical observations link tumor size with therapeutic resistance. It is generally thought that as tumors grow, the proportion of cells resistant to chemotherapy increases. Larger cancers may also have relatively poor blood supply and more pronounced gradients in interstitial pressure, hypoxia, and acidity, which may influence tumor cell sensitivity to chemotherapeutics and radiation treatments.

Other UT Southwestern investigators involved in this study were Dr. David Johnson, chairman of internal medicine and senior author; Dr. Joan Schiller, chief of hematology/oncology and deputy director of the Simmons Cancer Center; and Daniel H. Ahn, a former internal medicine resident and palliative care fellow. Researchers from the Dana Farber Cancer Institute, Johns Hopkins University, and the Oregon Health Sciences University also contributed.

This analysis was completed with support from the National Institutes of Health and the Department of Health and Human Services. This work was also supported in part by a National Cancer Institute Cancer Clinical Investigator Team Leadership Award and the North and Central Texas Clinical and Translational Science Initiative.

Visit the Harold C. Simmons Cancer Center to learn more about cancer research, screening, and therapy at UT Southwestern, including highly individualized treatments for cancer at the region’s only National Cancer Institute-designated center.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 90,000 hospitalized patients and oversee more than 1.9 million outpatient visits a year.

Media Contact: Alex Lyda
214-648-3404
alex.lyda@utsouthwestern.edu

Alex Lyda | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>