Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tumor measurements predict survival in advanced non-small cell lung cancer

For the two-thirds of lung cancer patients with locally advanced or metastatic disease, tumor size is not used currently to predict overall survival times.

A new study, however, led by UT Southwestern Medical Center researchers has shown that even in advanced stages total tumor size can have a major impact on survival.

Using data from a National Cancer Institute-sponsored Phase 3 trial involving 850 patients with advanced lung cancer, Dr. David Gerber, assistant professor of internal medicine at UT Southwestern, and colleagues from other academic medical centers reviewed the recorded total tumor dimensions – which may include not only the primary tumor, but also those in lymph nodes and other sites of metastatic disease. Dr. Gerber’s team found that total tumor measurements greater than 3 inches predicted shorter survival times.

“The traditional view is that once a cancer has spread to the lymph nodes or to other organs, tumor dimensions are unlikely to affect patient outcomes,” explained Dr. Gerber, a member of the Harold C. Simmons Comprehensive Cancer Center and lead author of the study. “However, the survival differences we found are not only statistically significant, but also clinically meaningful.”

In the study, published online in the British Journal of Cancer, the average total tumor dimension was 7.5 centimeters, or roughly 3 inches. Patients with total tumor dimensions above this size lived an average of 9.5 months. Patients with total dimensions below 7.5 centimeters lived an average of 12.6 months, representing a 30 percent increase in survival.

When total tumor dimension was further divided into quartiles, the survival differences were even greater, ranging from 8.5 months to 13.3 months. These differences persisted even when multiple prognostic factors, such as age, gender, and type of treatment, were included in the analysis.

Dr. Gerber explained that, if confirmed in other populations, these findings could affect future clinical trials and patient care.

“Ultimately, clinical researchers might consider this information as they review outcome data, making sure survival differences are attributed to treatment effects and not to baseline differences in total tumor dimensions,” he said. “Practicing physicians may also use the information to estimate prognosis.”

Precise measurements of lung cancer tumors can be used in tailoring therapy and helping doctors steer patients to the best clinical trials, he added.

While the study did not seek to explain the biological reasons why this size association may hold true, a number of preclinical observations link tumor size with therapeutic resistance. It is generally thought that as tumors grow, the proportion of cells resistant to chemotherapy increases. Larger cancers may also have relatively poor blood supply and more pronounced gradients in interstitial pressure, hypoxia, and acidity, which may influence tumor cell sensitivity to chemotherapeutics and radiation treatments.

Other UT Southwestern investigators involved in this study were Dr. David Johnson, chairman of internal medicine and senior author; Dr. Joan Schiller, chief of hematology/oncology and deputy director of the Simmons Cancer Center; and Daniel H. Ahn, a former internal medicine resident and palliative care fellow. Researchers from the Dana Farber Cancer Institute, Johns Hopkins University, and the Oregon Health Sciences University also contributed.

This analysis was completed with support from the National Institutes of Health and the Department of Health and Human Services. This work was also supported in part by a National Cancer Institute Cancer Clinical Investigator Team Leadership Award and the North and Central Texas Clinical and Translational Science Initiative.

Visit the Harold C. Simmons Cancer Center to learn more about cancer research, screening, and therapy at UT Southwestern, including highly individualized treatments for cancer at the region’s only National Cancer Institute-designated center.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 90,000 hospitalized patients and oversee more than 1.9 million outpatient visits a year.

Media Contact: Alex Lyda

Alex Lyda | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>