Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-activated protein promotes cancer spread

14.05.2013
Researchers at the University of California, San Diego School of Medicine and UC San Diego Moores Cancer Center report that cancers physically alter cells in the lymphatic system – a network of vessels that transports and stores immune cells throughout the body – to promote the spread of disease, a process called metastasis.

The findings are published in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

Roughly 90 percent of all cancer deaths are due to metastasis – the disease spreading from the original tumor site to multiple, distant tissues and finally overwhelming the patient's body. Lymph vessels are often the path of transmission, with circulating tumor cells lodging in the lymph nodes – organs distributed throughout the body that act as immune system garrisons and traps for pathogens and foreign particles.

The researchers, led by principal investigator Judith A. Varner, PhD, professor of medicine at UC San Diego Moores Cancer Center, found that a protein growth factor expressed by tumors called VEGF-C activates a receptor called integrin á4â1 on lymphatic vessels in lymph node tissues, making them more attractive and sticky to metastatic tumor cells.

"One of the most significant features of this work is that it highlights the way that tumors can have long-range effects on other parts of the body, which can then impact tumor metastasis or growth," said Varner.

Varner said á4â1 could prove to be a valuable biomarker for measuring cancer risk, since increased levels of the activated protein in lymph tissues is an indirect indicator that an undetected tumor may be nearby.

She said whole-body imaging scans of the lymphatic network might identify problem areas relatively quickly and effectively. "The idea is that a radiolabeled or otherwise labeled anti-integrin á4â1 antibody could be injected into the lymphatic circulation, and it would only bind to and highlight the lymphatic vessels that have been activated by the presence of a tumor."

Varner noted that á4â1 levels correlate with metastasis – the higher the level, the greater the chance of the cancer spreading. With additional research and clinical studies, doctors could refine treatment protocols so that patients at higher risk are treated appropriately, but patients at lower or no risk of metastasis are not over-treated.

The researchers noted in their studies that it is possible to suppress tumor metastasis by reducing growth factor levels or by blocking activation of the á4â1 receptor. Varner said an antibody to VEGF-R3 is currently in Phase 1 clinical trials. An approved humanized anti-á4â1 antibody is currently approved for the treatment of multiple sclerosis and Crohn's disease. Varner said her lab at UC San Diego Moores Cancer Center is investigating the possibility of developing one for treating cancer.

Co-authors include Barbara Garmy-Susini, Christie J. Avraamides, Michael C. Schmid and Philippe Foubert, UC San Diego Moores Cancer Center; Jay S. Desgrosellier, UC San Diego Moores Cancer Center and UCSD Department of Pathology; Lesley G. Ellies, Scott R. Vanderberg, Brian Datnow, Huan-You Wang and David A. Cheresh, UCSD Department of Pathology; Andrew M. Lowy and Sarah L. Blair, UC San Diego Moores Cancer Center and UCSD Department of Surgery.

Funding for this research came, in part, from National Institutes of Health grants CA83133 and CA126820; Department of Defense grant W81XWH-06-1-052 and NIH-National Cancer Institute grant U54 CA119335.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>