Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tumor-activated protein promotes cancer spread

Researchers at the University of California, San Diego School of Medicine and UC San Diego Moores Cancer Center report that cancers physically alter cells in the lymphatic system – a network of vessels that transports and stores immune cells throughout the body – to promote the spread of disease, a process called metastasis.

The findings are published in this week's online Early Edition of the Proceedings of the National Academy of Sciences.

Roughly 90 percent of all cancer deaths are due to metastasis – the disease spreading from the original tumor site to multiple, distant tissues and finally overwhelming the patient's body. Lymph vessels are often the path of transmission, with circulating tumor cells lodging in the lymph nodes – organs distributed throughout the body that act as immune system garrisons and traps for pathogens and foreign particles.

The researchers, led by principal investigator Judith A. Varner, PhD, professor of medicine at UC San Diego Moores Cancer Center, found that a protein growth factor expressed by tumors called VEGF-C activates a receptor called integrin á4â1 on lymphatic vessels in lymph node tissues, making them more attractive and sticky to metastatic tumor cells.

"One of the most significant features of this work is that it highlights the way that tumors can have long-range effects on other parts of the body, which can then impact tumor metastasis or growth," said Varner.

Varner said á4â1 could prove to be a valuable biomarker for measuring cancer risk, since increased levels of the activated protein in lymph tissues is an indirect indicator that an undetected tumor may be nearby.

She said whole-body imaging scans of the lymphatic network might identify problem areas relatively quickly and effectively. "The idea is that a radiolabeled or otherwise labeled anti-integrin á4â1 antibody could be injected into the lymphatic circulation, and it would only bind to and highlight the lymphatic vessels that have been activated by the presence of a tumor."

Varner noted that á4â1 levels correlate with metastasis – the higher the level, the greater the chance of the cancer spreading. With additional research and clinical studies, doctors could refine treatment protocols so that patients at higher risk are treated appropriately, but patients at lower or no risk of metastasis are not over-treated.

The researchers noted in their studies that it is possible to suppress tumor metastasis by reducing growth factor levels or by blocking activation of the á4â1 receptor. Varner said an antibody to VEGF-R3 is currently in Phase 1 clinical trials. An approved humanized anti-á4â1 antibody is currently approved for the treatment of multiple sclerosis and Crohn's disease. Varner said her lab at UC San Diego Moores Cancer Center is investigating the possibility of developing one for treating cancer.

Co-authors include Barbara Garmy-Susini, Christie J. Avraamides, Michael C. Schmid and Philippe Foubert, UC San Diego Moores Cancer Center; Jay S. Desgrosellier, UC San Diego Moores Cancer Center and UCSD Department of Pathology; Lesley G. Ellies, Scott R. Vanderberg, Brian Datnow, Huan-You Wang and David A. Cheresh, UCSD Department of Pathology; Andrew M. Lowy and Sarah L. Blair, UC San Diego Moores Cancer Center and UCSD Department of Surgery.

Funding for this research came, in part, from National Institutes of Health grants CA83133 and CA126820; Department of Defense grant W81XWH-06-1-052 and NIH-National Cancer Institute grant U54 CA119335.

Scott LaFee | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>