Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel tuberculosis vaccine in Germany in clinical phase

11.09.2008
For the first time in more than 80 years a promising live vaccine against tuberculosis has passed into the clinical phase in Germany: Since Monday of this week the new vaccine, which goes by the designation "VPM1002", has begun safety testing on volunteers in a Phase I clinical trial in Neuss, Germany.

It is based on a highly safe vaccine that was introduced in 1921. However, the vaccine has been genetically developed to an extent where it is significantly more effective at preventing infection with tuberculosis bacteria than its predecessor.

So far, VPM1002 has proved to be extremely effective and safe in animal models. „ This good protection now has to be proven in humans for the vaccine to be ready for the final approval,” explains the Chief Executive Officer of Vakzine Projekt Management GmbH (VPM), Bernd Eisele.

VPM coordinates application-oriented development of vaccines. The organisation is a public-private partnership established by the Federal Ministry of Education and Research (BMBF) and Helmholtz Centre for Infection Research in 2002. „ We ensure that the outstanding results of basic science are actually used for the good of mankind and make their way into use,” says the Clinical Project Manager Hans von Zepelin. In this, the superb contacts enjoyed by VPM within German science prove a great aid, as the Scientific and Technical Services Manager at the Helmholtz Centre for Infection Research, Rudi Balling, states: “VPM knows exactly where promising projects can be found. With their assistance we, the researchers, can show that our ideas are helping people to stay healthy.”

With the financial support of the BMBF VPM was able to licence the novel tuberculosis vaccine from the Max Planck Institute for Infection Biology. The scientific foundation was established in this institute by its Founding Director Stefan H.E. Kaufmann. “The new vaccine is based on the most administered live-vaccine worldwide: Bacille Calmette-Guérin (BCG). However, BCG often fails to display effects anymore. We wanted to sharpen the blunted weapon that is BCG once again.”

How this was achieved is described by Leander Grode, at that time a research assistant with Stefan H.E. Kaufmann and now Project Manager at VPM: “The weakened vaccine was genetically modified in such a way to ensure that it is no longer able to hide from the human immune system and even stimulates the body’s own defences now.” For that a gene of a different bacterium, Listeria, was inserted into the vaccine. “Macrophages of the human immune system take up the vaccine immediately. There it ends up in phagosomes”, says Grode. “Due to the genetic modification the bacteria can leave the phagosomes and are then present in the middle of the immune cell – this alarms the rest of the immune system, which is then armed to repel real tuberculosis pathogens.”

Ihre Ansprechpartner

Hannes Schlender (Pressesprecher)
Helmholtz-Zentrum für Infektionsforschung
Presse- und Öffentlichkeitsarbeit / Public relations
Inhoffenstraße 7
D - 38124 Braunschweig
Tel +49 (0) 531.6181-1402
Fax +49 (0) 531.6181-1499
Hannes.schlender@helmholtz-hzi.de

Dr. med. Bernd Eisele (CEO)
Vakzine Projekt Management GmbH
Presse- und Öffentlichkeitsarbeit
Mellendorferstrasse 9 / D-30625 Hannover
Tel +49 (0) 511 1699080
Fax +49 (0) 511 169908-29
eisele@vakzine-manager.de

Hannes Schlender | Helmholtz-Gemeinschaft
Further information:
http://www.helmholtz-hzi.de

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>