Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trigger for Fatty Liver in Obesity

07.09.2017

Morbid obesity affects the liver: Almost one-third of all adults suffer from chronic fatty liver disease, which can lead to infections and even trigger cancer. Researchers at the University Children's Hospital Zurich and the University of Zurich have now found a signaling pathway in cells that play an important role in the development of fatty liver disease.

In Switzerland, about every tenth adult suffers from morbid obesity. Such corpulence can not only lead to diabetes or cardiovascular disease, but also to fat accumulation in the liver. Worldwide, about 25 to 30 percent of all adults and increasingly children are affected by such steatosis – becoming the most frequent liver disease in recent years. Some patients suffer from inflammation that could lead to a scarred shrinkage of the liver (cirrhosis) or even cancer.


A healthy liver (left) can develo a steatosis (right).

Image UZH

Receptor for programmed cell death activated

Despite the increasing frequency of obesity-related liver steatosis, there is currently insufficient knowledge about the origin of this disease. At the University Children's Hospital Zurich, researchers from the University of Zurich have identified a signaling pathway in liver cells that may contribute to the development of steatosis.

In the process, the plasma membrane receptor Fas (CD95) is key; this cell receptor occurs in almost all human cells and is involved in programmed cell death (apoptosis). This self-destruction program is activated when cells are no longer functional or are even developing malignantly. Activation of the Fas receptor then induces apoptosis in these cells. A low-threshold activation of Fas, however, can trigger cell reproduction or an inflammatory response without cell death occurring.

Lack of Fas receptor protects against a fatty liver

“In our study, we were able to demonstrate in mouse models that Fas is activated within the scope of obesity and can therefore lead to the development of liver steatosis,” says Prof. Dr. med. Daniel Konrad, professor for endocrinology and diabetology from the University of Zurich and physician at the University Children's Hospital Zurich.

“Mice missing Fas in their liver cells were protected against the development of obesity-induced fatty liver for the most part.” The animals are also considerably less insulin resistant. “Conversely, our study shows that an increased Fas content in the liver can lead to liver steatosis and insulin resistance, even in case of a normal body weight,” Konrad explains.

Permeable mitochondria inhibit lipid oxidation

The team of researchers found indications that an activation of Fas affects the mitochondria: Their capacity to oxidize fatty acids is limited and therefore leads to the accumulation of lipids in liver cells. In the process, the protein-coded gene “BID” plays an important role. This gene is also involved in programmed cell death, leading to an increased permeability of the mitochondrial membrane. The researchers were able to demonstrate that mice with increased Fas content but simultaneously low BID content in the liver were protected against the development of fatty liver.

New therapy approach possible

The study therefore shows how both factors, Fas and BID, interact in case of obesity contributing to fatty liver disease. “The described signaling pathway of Fas and BID could serve as a novel target for a better treatment of fatty liver disease associated with obesity,” Daniel Konrad explains.

Literature:
Flurin Item, Stephan Wueest, Vera Lemos, Sokrates Stein, Fabrizio C. Lucchini, Rémy Denzler, Muri-el C. Fisser, Tenagne D. Challa, Eija Pirinen, Youngsoo Kim, Silvio Hemmi, Erich Gulbins, Atan Gross, Lorraine A. O’Reilly, Markus Stoffel, Johan Auwerx, Daniel Konrad. Fas Cell Surface Death Receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communica-tions. 7. September, 2017.DOI: 10.1038/s41467-017-00566-9

Contact:
Prof. Dr. med. Daniel Konrad
Endocrinology / Diabetology
University Children's Hospital Zurich
Phone: +41 44 266 73 85
E-mail: daniel.konrad@kispi.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/Fatty-Liver-in-Obesity.html

Melanie Nyfeler | Universität Zürich

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>