Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New trigger for chronic inflammation in rheumatoid arthritis discovered

30.06.2009
A signal molecule made by the human body that triggers the immune system into action may be important in rheumatoid arthritis, according to new research published today in Nature Medicine. The authors of the study, from Imperial College London, say that if scientists could block this signal, it may be possible to develop more effective arthritis treatments.

Rheumatoid arthritis is the most common autoimmune disease, affecting around 1 in 100 people. It causes painful and persistent swelling in the joints that can result in damage to the bone and cartilage.

Around half of all patients do not respond to one or more of the treatments currently available, and even these can become less successful over time. The researchers behind the new study say stopping the disease closer to the root of the problem could be the best way to treat it, and their results suggest a new target for therapies.

When a microbe infects the body, the body responds by turning on a molecular switch to set the immune system into action and protect the body from disease. Today's findings show that a signal molecule called tenascin-C can trigger the same molecular switch and also activate the immune system. High levels of tenascin-C present in joints therefore may cause the activated immune system to attack the joint leading to the persistent inflammation of rheumatoid arthritis.

The molecular switch is called TLR4, and is found on the surface of immune cells. Previous research has shown that mice without TLR4 do not show chronic joint inflammation. The researchers hope scientists can develop new treatments that target the interaction between tenascin-C and TLR4, which may help to combat rheumatoid arthritis.

Dr Kim Midwood, lead author of the study from the Kennedy Institute of Rheumatology at Imperial College London, said: "Rheumatoid arthritis is a debilitating and painful disease and, unfortunately, there is no cure. Furthermore, current treatments are not effective for many patients."

"We have uncovered one way that the immune system may be triggered to attack the joints in patients with rheumatoid arthritis. We hope our new findings can be used to develop new therapies that interfere with tenascin-C activation of the immune system and that these will reduce the painful inflammation that is a hallmark of this condition," added Dr Midwood.

The researchers reached their conclusions by carrying out five studies. One study suggested that tenascin-C was needed to sustain inflammation. The researchers induced joint inflammation in mice with and without the gene for tenascin-C. They found the mice that could produce tenascin-C had severe joint swelling with bone and cartilage destruction, but the mice that could not produce tenascin-C had no swelling or tissue destruction at all.

In a subsequent study, the researchers injected the active part of the tenascin-C molecule into mice joints. They found it caused the joints of the mice to become inflamed and that this reaction was more intense with higher doses.

Another experiment demonstrated that tenascin-C causes swelling in the joints by increasing levels of molecules that cause inflammation. The researchers took human immune cells called macrophages and cells called fibroblasts from the swollen joint of patients with rheumatoid arthritis and added tenascin-C. After the tenascin-C was added, the cells produced more molecules that cause inflammation.

The authors plan to work out the precise mechanism by which tenascin-C increases these levels of inflammatory molecules in the human joint and try to find ways to inhibit this action.

This work was funded by the Arthritis Research Campaign, The Kennedy Institute of Rheumatology Trustees and an MRC New Investigators Research Grant awarded to K. M. The researchers are also grateful for support from the NIHR Biomedical Research Centre funding scheme.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>