Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for crippling diabetic Charcot foot

14.07.2010
Technique Involves Stabilizing Device Called Circular External Fixator

The alarming increase of morbidly obese diabetics is causing more new cases of a debilitating foot deformity called Charcot foot.

Charcot foot can make walking difficult or impossible, and in severe cases can require amputation.

But a surgical technique that secures foot bones with an external frame has enabled more than 90 percent of patients to walk normally again, according to Loyola University Health System foot and ankle surgeon Dr. Michael Pinzur. Pinzur, one of the nation's leading surgeons who treat Charcot foot, describes the device in the journal Hospital Practice.

The device, called a circular external fixator, is a rigid frame made of stainless steel and aircraft-grade aluminum. It contains three rings that surround the foot and lower calf. The rings have stainless-steel pins that extend to the foot and secure the bones after surgery.

The fixator "has been demonstrated to achieve a high potential for enhanced clinical outcomes with a minimal risk for treatment-associated morbidity," Pinzer wrote. Pinzur treats about 75 Charcot patients per year with external fixators. Most of these patients are diabetics.

Charcot foot can occur in a diabetic who has neuropathy (nerve damage) in the foot that impairs the ability to feel pain. Charot foot typically occurs following a minor injury, such as a sprain or stress fracture. Because the patient doesn't feel the injury, he or she continues to walk, making the injury worse. Bones fracture, joints collapse and the foot becomes deformed. The patient walks on the side of the foot and develops pressure sores. Bones can become infected.

The obesity epidemic is increasing the incidence of Charcot foot in two ways. The excess weight increases the risk of diabetic neuropathy, as well as the risk that patients with diabetic neuropathy will develop Charcot foot.

There has been an alarming increase in morbid obesity among diabetics. About 62 percent of U.S. adults with Type 2 diabetes now are obese, and 21 percent are morbidly obese, according to a 2009 study by Loyola kidney specialist Dr. Holly Kramer and colleagues published in the Journal of Diabetes and its complications.

Morbid obesity is defined as having a body mass index (BMI) greater than 40. For example, a person who is 5-foot, 10-inches tall and has a BMI of 40 weighs 278 pounds.

Traditional surgical techniques, in which bones are held in place by internal plates and screws, don't work with a subset of obese Charcot patients. Their bones, already weakened by complications of Charcot foot, could collapse under the patient's heavy weight.

A common treatment in such cases is to put the patient in a cast. But bones can heal in deformed positions. And, it is difficult or impossible for obese patients to walk on one leg when the other leg is in a cast. Patients typically have to use wheelchairs and are confined to the first story of the house for as long as nine months. And after the cast comes off, they must wear a cumbersome leg brace.

By contrast, patients who are treated with an external fixator often are able to walk or at least bear some weight on the treated leg. The device is attached to the leg for only two or three months.

A 2007 study by Pinzer, published in Foot & Ankle International, demonstrated the benefits of the external fixator. Pinzur followed 26 obese, diabetic Charcot foot patients who had an average body mass index of 38.3. After surgery to correct the deformity, the foot bones were held in place by the external fixator. A year or more later, 24 of the 26 patients (92 percent) had no ulcers or bone infections and were able to walk without braces, wearing commercially available shoes designed for diabetics.

Pinzur is a professor in the Department of Orthopaedic Surgery and Rehabilitation at Loyola University Chicago Stritch School of Medicine.

Based in the western suburbs of Chicago, Loyola University Health System is a quaternary care system with a 61-acre main medical center campus, the 36-acre Gottlieb Memorial Hospital campus and 28 primary and specialty care facilities in Cook, Will and DuPage counties. The medical center campus is conveniently located in Maywood, 13 miles west of the Chicago Loop and 8 miles east of Oak Brook, Ill. The heart of the medical center campus, Loyola University Hospital, is a 561-licensed-bed facility. It houses a Level 1 Trauma Center, a Burn Center and the Ronald McDonald® Children's Hospital of Loyola University Medical Center. Also on campus are the Cardinal Bernardin Cancer Center, Loyola Outpatient Center, Center for Heart & Vascular Medicine and Loyola Oral Health Center as well as the LUC Stritch School of Medicine, the LUC Marcella Niehoff School of Nursing and the Loyola Center for Fitness. Loyola's Gottlieb Memorial Hospital campus in Melrose Park includes the 264-bed community hospital, the Gottlieb Center for Fitness and the Marjorie G. Weinberg Cancer Care Center.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

Further reports about: BMI Bones Cancer Charcot Fitness LUC Loyola Medicine Memorial Stritch body mass diabetic neuropathy health services morbidly obese

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>