Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Treat acne with coconut oil and nano-bombs

A natural product found in both coconut oil and human breast milk – lauric acid -- shines as a possible new acne treatment thanks to a bioengineering graduate student from the UC San Diego Jacobs School of Engineering.

The student developed a “smart delivery system” – published in the journal ACS Nano in March – capable of delivering lauric-acid-filled nano-scale bombs directly to skin-dwelling bacteria (Propionibacterium acnes) that cause common acne.

On Thursday April 15, bioengineering graduate student Dissaya “Nu” Pornpattananangkul will present her most recent work on this experimental acne-drug-delivery system at Research Expo, the annual research conference of the UC San Diego Jacobs School of Engineering. Watch the video (2 or 3.5 minute version) on the Jacobs School blog.

Common acne, also known as “acne vulgaris,” afflicts more than 85 percent of teenagers and over 40 million people in the United States; and current treatments have undesirable side effects including redness and burning. Lauric-acid-based treatments could avoid these side effects, the UC San Diego researchers say.

“It’s a good feeling to know that I have a chance to develop a drug that could help people with acne,” said Pornpattananangkul, who performs this research in the Nanomaterials and Nanomedicine Laboratory of UC San Diego NanoEngineering professor Liangfang Zhang from the Jacobs School of Engineering.

The new smart delivery system includes gold nanoparticles attached to surfaces of lauric-acid-filled nano-bombs. The gold nanoparticles keep the nano-bombs (liposomes) from fusing together. The gold nanoparticles also help the liposomes locate acne-causing bacteria based on the skin microenvironment, including pH.

Once the nano-bombs reach the bacterial membranes, the acidic microenvironment causes the gold nanoparticles to drop off. This frees the liposomes carrying lauric acid payloads to fuse with bacterial membranes and kill the Propionibacterium acnes bacteria.

“Precisely controlled nano-scale delivery of drugs that are applied topically to the skin could significantly improve the treatment of skin bacterial infections. By delivering drugs directly to the bacteria of interest, we hope to boost antimicrobial efficacy and minimize off-target adverse effects,” said Zhang. “All building blocks of the nano-bombs are either natural products or have been approved for clinical use, which means these nano-bombs are likely to be tested on humans in the near future.”

Zhang noted that nano-scale topical drug delivery systems face a different set of challenges than systems that use nanotechnology to deliver drugs systematically to people.

Pornpattananangkul and UC San Diego chemical engineering undergraduate Darren Yang confirmed, in 2009 in the journal Biomaterials, the antimicrobial activity of nano-scale packets of lauric acid against Propionibacterium acnes.

Pornpattananangkul, who is originally from Thailand, said that it’s just a coincidence that her research involves a natural product produced by coconuts – a staple of Thai cuisine.

From a new solar concentrator design to balancing robots, experimental acne drugs, and wireless heart and brain sensors, UC San Diego graduate engineering students are developing next generation technologies and therapies to address the environmental, health and computing needs of society. These students will present their cutting edge projects at the 29th Annual Jacobs School of Engineering Research Expo on April 15. The theme of this year’s Expo is “Renewables and America’s Energy Future.” Register for Research Expo 2010 here. Directions and parking information is here.

Daniel Kane | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>