Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treat acne with coconut oil and nano-bombs

15.04.2010
A natural product found in both coconut oil and human breast milk – lauric acid -- shines as a possible new acne treatment thanks to a bioengineering graduate student from the UC San Diego Jacobs School of Engineering.

The student developed a “smart delivery system” – published in the journal ACS Nano in March – capable of delivering lauric-acid-filled nano-scale bombs directly to skin-dwelling bacteria (Propionibacterium acnes) that cause common acne.

On Thursday April 15, bioengineering graduate student Dissaya “Nu” Pornpattananangkul will present her most recent work on this experimental acne-drug-delivery system at Research Expo, the annual research conference of the UC San Diego Jacobs School of Engineering. Watch the video (2 or 3.5 minute version) on the Jacobs School blog.

Common acne, also known as “acne vulgaris,” afflicts more than 85 percent of teenagers and over 40 million people in the United States; and current treatments have undesirable side effects including redness and burning. Lauric-acid-based treatments could avoid these side effects, the UC San Diego researchers say.

“It’s a good feeling to know that I have a chance to develop a drug that could help people with acne,” said Pornpattananangkul, who performs this research in the Nanomaterials and Nanomedicine Laboratory of UC San Diego NanoEngineering professor Liangfang Zhang from the Jacobs School of Engineering.

The new smart delivery system includes gold nanoparticles attached to surfaces of lauric-acid-filled nano-bombs. The gold nanoparticles keep the nano-bombs (liposomes) from fusing together. The gold nanoparticles also help the liposomes locate acne-causing bacteria based on the skin microenvironment, including pH.

Once the nano-bombs reach the bacterial membranes, the acidic microenvironment causes the gold nanoparticles to drop off. This frees the liposomes carrying lauric acid payloads to fuse with bacterial membranes and kill the Propionibacterium acnes bacteria.

“Precisely controlled nano-scale delivery of drugs that are applied topically to the skin could significantly improve the treatment of skin bacterial infections. By delivering drugs directly to the bacteria of interest, we hope to boost antimicrobial efficacy and minimize off-target adverse effects,” said Zhang. “All building blocks of the nano-bombs are either natural products or have been approved for clinical use, which means these nano-bombs are likely to be tested on humans in the near future.”

Zhang noted that nano-scale topical drug delivery systems face a different set of challenges than systems that use nanotechnology to deliver drugs systematically to people.

Pornpattananangkul and UC San Diego chemical engineering undergraduate Darren Yang confirmed, in 2009 in the journal Biomaterials, the antimicrobial activity of nano-scale packets of lauric acid against Propionibacterium acnes.

Pornpattananangkul, who is originally from Thailand, said that it’s just a coincidence that her research involves a natural product produced by coconuts – a staple of Thai cuisine.

From a new solar concentrator design to balancing robots, experimental acne drugs, and wireless heart and brain sensors, UC San Diego graduate engineering students are developing next generation technologies and therapies to address the environmental, health and computing needs of society. These students will present their cutting edge projects at the 29th Annual Jacobs School of Engineering Research Expo on April 15. The theme of this year’s Expo is “Renewables and America’s Energy Future.” Register for Research Expo 2010 here. Directions and parking information is here.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>