Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplanted neurons develop disease-like pathology in Huntington's patients

21.07.2009
The results of a recent study published in PNAS question the long-term effects of transplanted cells in the brains of patients suffering from Huntington's disease.

This study, conducted jointly by Dr. Francesca Cicchetti of Université Laval in Quebec, Canada, Dr. Thomas B. Freeman of the University of South Florida, USA, and colleagues provides the first demonstration that transplanted cells fail to offer a long-term replacement for degenerating neurons in patients with Huntington's disease.

Huntington's disease is a neurodegenerative disease of genetic origin that targets a particular type of neuron. The loss of these neurons is responsible for the appearance of involuntary movements as well as cognitive and psychiatric impairments. Over a decade ago, Dr. Thomas Freeman of the University of South Florida initiated a clinical trial of neural cell transplantation in Huntington's diseased patients in an attempt to alleviate the dreadful symptoms that characterize this disease.

Some patients demonstrated some mild, transient clinical benefits that lasted for about 2 years. However, the loss of functional recovery after this indicated that graft survival and functionality may be jeopardized long- term.

This post-mortem study of 3 cases is the first demonstration that 1) graft survival is indeed attenuated long-term, 2) grafts undergo degeneration that resembles the pathology observed in Huntington's disease, and 3) the brain's inflammatory response could contribute to the compromised survival of grafted cells. The authors also demonstrated that cortical neurons that develop Huntington's disease synapse on the grafts and may cause neurotoxicity to healthy cells, inducing grafted neuronal cell death.

Despite the excitement regarding cell transplantation therapy utilizing embryonic or stem cells, these results raise concerns for the therapeutic potential of transplantation as a treatment option for Huntington's disease. However, these observations suggest new potential mechanisms involved in the development of the disease. A more in-depth investigation could lead to the development of novel therapeutic strategies. The control of patient immune and inflammatory responses holds therapeutic potential, and Cicchetti et al. are continuing their research in that direction.

Dr. Francesca Cicchetti is a professor in the Department of Psychiatry/Neuroscience at Université Laval and a researcher in neurobiology at le Centre hospitalier universitaire de Québec. She is directing a research laboratory focused on understanding neuronal degeneration and developing therapeutic strategies for neurodegenerative diseases.

Dr. Thomas B. Freeman is a neurosurgeon, director of clinical research, and medical director of the Center of Excellence for Aging and Brain Repair at the University of South Florida.

This work includes the scientific contribution of the following authors:
Samuel Saporta (University of South Florida)
Robert Hauser (Parkinson's Disease and Movement Disorders Center, National Parkinson's Foundation Center of Excellence, University of South Florida)
Martin Parent (Groupe de recherche sur le système nerveux central [GRSNC])
Martine Saint-Pierre (Centre de Recherche du CHUL [CHUQ])
Paul Sanberg (University of South Florida)
Xiao Li (Emory University School of Medicine)
John Parker (University of Louisville Health Sciences Center)
Yaping Chu (Rush University Medical Center)
Elliot Mufson (Rush University Medical Center)
Jeffrey Kordower (Rush University Medical Center)
Information:
Francesca Cicchetti
Centre de Recherche du CHUL (CHUQ), Unité de Neurosciences,Canada
Université Laval
Tel.: 418-656-4141, ext. 48853
Tel.:418-262-9122
Francesca.Cicchetti@crchul.ulaval.ca
Thomas B. Freeman,
University of South Florida, USA
Tel.: 813-259-0889
Tel.: 813-389-0679 tfreeman@health.usf.edu

Sarah Sanchez | EurekAlert!
Further information:
http://www.ulaval.ca

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>