Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic jam in brain causes schizophrenia symptoms

13.08.2009
Scientists create first mouse to develop disease as teenager, just like humans

Schizophrenia waits silently until a seemingly normal child becomes a teenager or young adult. Then it swoops down and derails a young life.

Scientists have not understood what causes the severe mental disorder, which affects up to 1 percent of the population and results in hallucinations, memory loss and social withdrawal.

But new research from the Northwestern University Feinberg School of Medicine has revealed how schizophrenia works in the brain and provided a fresh opportunity for treatment. In a new, genetically engineered mouse model, scientists have discovered the disease symptoms are triggered by a low level of a brain protein necessary for neurons to talk to one another.

A Traffic Jam in Brain

In human and mouse brains, kalirin is the brain protein needed to build the dense network of highways, called dendritic spines, which allow information to flow from one neuron to another. Northwestern scientists have found that without adequate kalirin, the frontal cortex of the brain of a person with schizophrenia only has a few narrow roads. The information from neurons gets jammed up like rush hour traffic on an interstate highway squeezed to a single lane.

"Without enough pathways, the information takes much longer to travel between neurons and much of it will never arrive," said Peter Penzes, assistant professor of physiology at the Feinberg School. He is senior author of a paper reporting the findings published in a recent issue of the Proceedings of the National Academy of Science. Michael Cahill, a Feinberg doctoral student in neuroscience, is the lead author.

First Mouse Model to Develop Disease as a Teenager

Penzes discovered the kalirin effect after he created the mouse model, which was the first to have a low level of kalirin and the first to develop symptoms of schizophrenia as an adolescent (two months old in mouse time). This mimics the delayed onset of the disease in humans. In normal development, the brain ramps up the production of kalirin as it begins to mature in adolescence.

New Direction for Treatment

"This discovery opens a new direction for treating the devastating cognitive symptoms of schizophrenia," Penzes said. "There is currently no treatment for that. It suggests that if you can stimulate and amplify the activity of the protein kalirin that remains in the brain, perhaps we can help the symptoms."

Currently the only drug treatment for schizophrenia is an antipsychotic. "The drugs address the hallucinations and calm down the patient, but they don't improve their working memory (the ability of the brain to temporarily store and manage information required for complex mental tasks such as learning and reasoning) or their ability to think or their social behavior," Penzes said. "So you end up with patients who still can't integrate into society. Many attempt suicide."

Similarities Between Human and Mouse Brains

A few years ago in postmortem examinations of schizophrenic human brains, other scientists had found fewer connections between the brain cells in the frontal cortex and lower levels of kalirin. But the scientists couldn't show whether one condition led to the other.

With the new mouse model, Penzes was able to demonstrate that the low level of kalirin resulted in fewer dendritic spines in the frontal cortex of the brain, the part of the brain responsible for problem solving, planning and reasoning. Other areas of the brain had a normal number of the dendritic spines. Human brains and mouse brains share many similarities in the way they function, Penzes said.

The new schizophrenic mouse model also exhibits more schizophrenic symptoms than other models, making these mice especially good for drug testing and development, Penzes said. The mice with low amounts of kalirin had a poor working memory, were antisocial and hyperactive.

Penzes said future studies would aim at enhancing the function of kalirin in the brain in an effort to correct the cognitive symptoms of schizophrenia.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>