Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxicity mechanism identified for Parkinson's disease

05.01.2009
Neurologists have observed for decades that Lewy bodies, clumps of aggregated proteins inside cells, appear in the brains of patients with Parkinson's disease and other neurodegenerative diseases.

The presence of Lewy bodies suggests underlying problems in protein recycling and waste disposal, leading to the puzzle: how does disrupting those processes kill brain cells?

One possible answer: by breaking a survival circuit called MEF2D. Researchers at Emory University School of Medicine have discovered that MEF2D is sensitive to the main component of Lewy bodies, a protein called alpha-synuclein.

In cell cultures and animal models of Parkinson's, an accumulation of alpha-synuclein interferes with the cell's recycling of MEF2D, leading to cell death. MEF2D is especially abundant in the brains of people with Parkinson's, the researchers found.

The results are scheduled for publication in the Jan. 2, 2009 issue of Science.

"We've identified what could be an important pathway for controlling cell loss and survival in Parkinson's disease," says senior author Zixu Mao, PhD, associate professor of pharmacology at Emory University School of Medicine.

Further research could identify drugs that could regulate MEF2D, allowing brain cells to survive toxic stresses that impair protein recycling, he suggests.

Most cases of Parkinson's disease are termed sporadic, meaning that there is no obvious genetic cause, but there are inherited forms of Parkinson's. Some of these can be linked to mutations in the gene for alpha-synuclein or triplications of the gene. The mutations and triplications cause the brain to produce either a toxic form of alpha-synuclein or more alpha-synuclein than normal.

"Somehow it's toxic, but alpha-synuclein isn't part of the cell's machinery of death and survival," Mao says.

He and his colleagues began examining how alpha-synuclein influenced MEF2D after a report from another laboratory on disposal of alpha-synuclein by chaperone-mediated autophagy (CMA).

During CMA, certain selected proteins are funneled into lysosomes, compartments of the cell devoted to chewing up discarded proteins. Mao and colleagues found that lysosomes isolated from cells will absorb MEF2D protein, and interfering with CMA chemically causes MEF2D levels to rise.

MEF2D is a transcription factor, a protein that controls whether several genes are turned on or off. Previous studies have shown MEF2D is needed for proper development and survival of brain cells. To function, MEF2D must be able to bind DNA.

The authors found that when CMA is disrupted, most of the accumulated MEF2D can't bind DNA. This may indicate that the protein is improperly folded or otherwise modified.

"Even though there's a lot of it, something is making the MEF2D protein inactive," Mao says.

Mao and his colleagues found that mice that artificially overproduce alpha-synuclein (a model of Parkinson's disease) have elevated levels of apparently inactive MEF2D in their brains. In addition, MEF2D protein levels were higher in the brains of Parkinson's patients than in controls.

Following the influence of alpha-synuclein on MEF2D may be a way to connect the various genetic and environmental risk factors for Parkinson's, even if CMA is not the sole mechanism, Mao says.

"It may be that various stresses impact MEF2D in different ways," he says. "We think this work provides an explanation that ties several important observations together."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>