Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topical treatment may prevent melanoma

27.04.2011
While incidents of melanoma continue to increase despite the use of sunscreen and skin screenings, a topical compound called ISC-4 may prevent melanoma lesion formation, according to Penn State College of Medicine researchers.

"The steady increase in melanoma incidence suggests that additional preventive approaches are needed to complement these existing strategies," said Gavin Robertson, Ph.D., professor of pharmacology, pathology, dermatology and surgery, and director of Penn State Hershey Melanoma Center.

Researchers targeted the protein Akt3, which plays a central role in 70 percent of melanoma by preventing cell death and has the potential to prevent early stages of melanoma.

"The Akt3 signaling pathway is deregulated in the majority of melanomas, making it a promising target which, if inhibited, could correct the apoptotic -- or cell death -- defect in melanocytic lesions, thereby preventing this disease," Robertson said.

Isothiocyantes were identified as inhibitors of Akt3. These are naturally occurring compounds found in cruciferous vegetables like broccoli and brussels sprouts that have anticancer properties. Unfortunately, previous research showed they have low chemotherapy potency on melanoma cells because high concentrations are needed to be effective. To create a more potent version, Penn State Hershey Melanoma Center researchers previously developed isoselenocyanates (ISC-4), by replacing sulfur with selenium.

Researchers have now found that repeated topical application of ISC-4 can reduce tumor cell expansion in laboratory-generated human skin by 80 to 90 percent and decrease tumor development in mice skin by about 80 percent. The research also showed that the use of the compound is safe. The research was recently reported in Cancer Prevention Research and featured on the journal cover.

To be an effective preventative agent, a substance needs to kill the melanoma cells while having little effect on normal cells. Researchers learned that ISC-4 kills melanoma cells two to five times more effectively than it kills normal cells. In addition, examination of the treated skin showed no obvious damage to skin cells or skin structure, and treated animals did not show signs of major organ-related toxicity. This indicates a potential for use as a topical application.

"ISC-4 prevented melanoma by decreasing Akt3 signaling that led to a three-fold increase in apoptosis rates," Robertson said. "Thus, topical ISC-4 can delay or slow down melanocytic lesion or melanoma development in preclinical models and could impact melanoma incidence rates, if similar results are observed in humans."

Currently, surgical excision is used to remove melanocytic lesions or prevent development into more aggressive cancer. Topical ISC-4 treatment could potentially be an alternative to surgery for some patients.

"Topical or localized treatments, such as those we propose for ISC-4, could permit the use of high local concentrations with minimal toxicity and be useful for treating cutaneous lesions not amenable to surgical removal or other currently available approaches," Robertson said.

"With more than $1 billion spent on sunscreen every year in the United States, the market for skin cancer prevention is enormous and continues to grow," Robertson said. "Addition of agents such as ISC-4 to sunscreens, body lotions or creams could have a profound impact on this market for preventing melanoma."

The study was supported by the American Cancer Society, the Foreman Foundation for Melanoma Research, National Institutes of Health, Elsa U. Pardee Foundation, Melanoma Research Foundation with support in part from the Mike Geltrude Foundation and the Pa. Department of Health.

Scientists who contributed to this research are Natalie Nguyen, Nhung Nguyen, Arun K. Sharma, Ph.D., Dhimant Desai, Ph.D., Sung Jin Huh, Ph.D., Shantu Amin, Ph.D., Department of Pharmacology; Arati Sharma, Ph. D., Department of Pharmacology, Penn State Melanoma Center and Penn State Melanoma Therapeutics Program; and Craig Meyers, Ph.D., Department of Microbiology and Immunology.

Matt Solovey | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Cancer ISC-4 Sharma cell death health services melanoma cells normal cells skin cell

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>