Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topical treatment may prevent melanoma

27.04.2011
While incidents of melanoma continue to increase despite the use of sunscreen and skin screenings, a topical compound called ISC-4 may prevent melanoma lesion formation, according to Penn State College of Medicine researchers.

"The steady increase in melanoma incidence suggests that additional preventive approaches are needed to complement these existing strategies," said Gavin Robertson, Ph.D., professor of pharmacology, pathology, dermatology and surgery, and director of Penn State Hershey Melanoma Center.

Researchers targeted the protein Akt3, which plays a central role in 70 percent of melanoma by preventing cell death and has the potential to prevent early stages of melanoma.

"The Akt3 signaling pathway is deregulated in the majority of melanomas, making it a promising target which, if inhibited, could correct the apoptotic -- or cell death -- defect in melanocytic lesions, thereby preventing this disease," Robertson said.

Isothiocyantes were identified as inhibitors of Akt3. These are naturally occurring compounds found in cruciferous vegetables like broccoli and brussels sprouts that have anticancer properties. Unfortunately, previous research showed they have low chemotherapy potency on melanoma cells because high concentrations are needed to be effective. To create a more potent version, Penn State Hershey Melanoma Center researchers previously developed isoselenocyanates (ISC-4), by replacing sulfur with selenium.

Researchers have now found that repeated topical application of ISC-4 can reduce tumor cell expansion in laboratory-generated human skin by 80 to 90 percent and decrease tumor development in mice skin by about 80 percent. The research also showed that the use of the compound is safe. The research was recently reported in Cancer Prevention Research and featured on the journal cover.

To be an effective preventative agent, a substance needs to kill the melanoma cells while having little effect on normal cells. Researchers learned that ISC-4 kills melanoma cells two to five times more effectively than it kills normal cells. In addition, examination of the treated skin showed no obvious damage to skin cells or skin structure, and treated animals did not show signs of major organ-related toxicity. This indicates a potential for use as a topical application.

"ISC-4 prevented melanoma by decreasing Akt3 signaling that led to a three-fold increase in apoptosis rates," Robertson said. "Thus, topical ISC-4 can delay or slow down melanocytic lesion or melanoma development in preclinical models and could impact melanoma incidence rates, if similar results are observed in humans."

Currently, surgical excision is used to remove melanocytic lesions or prevent development into more aggressive cancer. Topical ISC-4 treatment could potentially be an alternative to surgery for some patients.

"Topical or localized treatments, such as those we propose for ISC-4, could permit the use of high local concentrations with minimal toxicity and be useful for treating cutaneous lesions not amenable to surgical removal or other currently available approaches," Robertson said.

"With more than $1 billion spent on sunscreen every year in the United States, the market for skin cancer prevention is enormous and continues to grow," Robertson said. "Addition of agents such as ISC-4 to sunscreens, body lotions or creams could have a profound impact on this market for preventing melanoma."

The study was supported by the American Cancer Society, the Foreman Foundation for Melanoma Research, National Institutes of Health, Elsa U. Pardee Foundation, Melanoma Research Foundation with support in part from the Mike Geltrude Foundation and the Pa. Department of Health.

Scientists who contributed to this research are Natalie Nguyen, Nhung Nguyen, Arun K. Sharma, Ph.D., Dhimant Desai, Ph.D., Sung Jin Huh, Ph.D., Shantu Amin, Ph.D., Department of Pharmacology; Arati Sharma, Ph. D., Department of Pharmacology, Penn State Melanoma Center and Penn State Melanoma Therapeutics Program; and Craig Meyers, Ph.D., Department of Microbiology and Immunology.

Matt Solovey | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Cancer ISC-4 Sharma cell death health services melanoma cells normal cells skin cell

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>