Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top Food Scientist to Target Hidden Fish Allergens, Pork, with New Tests

01.07.2009
The odds of contracting mad cow disease from banned or adulterated bovine protein lurking in raw or processed food for humans or meat-bone meal for livestock have declined over the past decade. So have the risks of purchasing fishy imposters billed as red snapper, ground beef that isn’t all cow, or spoiled meat that doesn’t look or smell bad … yet.

All that consumer protection is thanks in part to improved food-testing methods -- quicker, more reliable paper-strip field tests and simpler, more accurate laboratory assays -- developed since the 1990s by food scientist Yun-Hwa Peggy Hsieh of The Florida State University. Currently, four assays in commercial use worldwide feature her patented technology.

Now, with two recent grants totaling nearly $500,000, Hsieh will begin work on the development of two new immunoassays for commercial use on both raw and processed food products. With a three-year, $280,000 award from the United States Department of Agriculture, she’ll design a test to detect fish allergens, which cause allergic reactions in more than 6 million people each year in the United States alone. And, with a two-year, $216,000 award from a division of the Tanaka Kikinzoku Group of Japan, Hsieh will devise a rapid test to detect traces of pork fat -- good news for more than a billion Muslims and millions of Jews who adhere to Halal and Kosher dietary laws, respectively, that forbid pork consumption.

“In 2004, the Food Allergen Labeling and Consumer Protection Act (FALCP) called for mandatory labeling of the eight major allergenic foods by January 2006, but while methods have been developed to detect the presence of shellfish, peanuts, tree nuts, wheat, soy, cow’s milk and egg, currently there’s still no way to test for fish proteins in food materials,” Hsieh said.

“With the increase in the production and consumption of seafood in recent years, more consumers with fish allergies are at risk of serious reactions or even death than ever before due to mislabeled or undeclared fish byproducts,” she said. “My USDA grant will enable me to develop a convenient and reliable tool to enforce FALCPA and protect those consumers.”

Hsieh expects to publish one or two papers per year during the course of the grant period. She anticipates at least one patent application for the project once it is completed.

“A fast, effective fish allergen immunoassay has the potential for immediate commercialization,” she said. “Currently, two domestic biotechnology companies, who already have licensed several of our species-specific tests for food and feed control in heat-processed products, are marketing immunoassay kits for detection of ingredients in all seven types of foods listed in the ‘Big Eight’ except for finfish. Since the FALCP labeling mandate took effect in 2006, these companies have been eagerly seeking assays for fish detection, and they have shown strong interest in my laboratory’s research efforts to develop fish-specific ones.”

Awarded on the heels of her USDA fish-allergens grant, Hsieh’s two-year grant from Tanaka Kikinzoku Kogyo K. of Japan will help to advance her earlier research on the detection of pork products in food and feed products.

“I previously developed a rapid pork immunoassay that can sensitively detect any pork muscle in food and feed mixtures regardless of their processing conditions,” Hsieh said. “This assay was commercialized in 2000 and has been widely used internationally. However, detection of pork fat remains challenging due to the physiochemical nature of the fat. Currently available methods all require sophisticated instruments coupled with complex data analysis procedures for interpreting results. Rapid field tests of pork or any other fat are non-existent.

“With this grant, I hope to change that, because such tests are vital to practicing Muslim and Jewish populations,” she said.

Hsieh’s novel and commercially successful food-testing technology took off in the 1990s when her research first revealed that even the rigors of rendering didn’t destroy certain marker proteins in animal muscle tissue. With that discovery, she developed immunoassays using specific antibodies that react to the presence of those thermostable proteins and identify which species they come from. Results from her immunoassays have trumped those of traditional analyses -- time-consuming food testing processes fraught with false positives and negatives because the high heat of rendering causes most animal proteins and DNA to degrade.

A distinguished professor in the Department of Nutrition, Food and Exercise Sciences at Florida State University’s College of Human Sciences, Hsieh holds 11 patented and patent-pending technologies. Learn more about her cutting-edge research at www.chs.fsu.edu/.

Peggy Hsieh | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>