Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooth movement an alternative to bone transplants

10.10.2011
Although replacing lost teeth often involves artificially building up the jaw, researchers at the Sahlgrenska Academy at the University of Gothenburg, Sweden, are now showcasing a new method whereby teeth are instead moved into the toothless area using a brace, giving patients the chance of having more teeth.

When we lose our teeth, perhaps because of illness or injury, the jaw in the toothless area also decreases in volume. This reduction makes it difficult to carry out dental implants, often leaving just one option for replacing lost teeth: building up the jaw with bone transplant.

Alternative method

Researchers at the University of Gothenburg’s Sahlgrenska Academy are now presenting an alternative method. In an experimental study on dogs, the Gothenburg researchers managed to use a brace to move existing teeth into a toothless area with limited bone volume, without any reduction of the tooth's natural attachment in the jaw.

In a subsequent clinical study, consultant Orthodontist Birgitta Lindskog Stokland and her colleagues also managed to show that the same procedure in humans caused only small changes in the tissue around the tooth.

No lasting problems

"X-rays showed some damage to the root known as root resorption, but this didn’t seem to cause any lasting problems," says Lindskog Stokland. "What’s more, our follow-ups a year later showed that the damage had lessened."

The original site of the moved tooth suffers a reduction in bone mass and dental tissue volume, though not to the same extent as when teeth come out for other reasons. This means that this area is well-suited to implants or other tooth replacements, without there being any need for bone transplants.

More teeth more easily

"In other words, many patients can be given more teeth more easily," says Lindskog Stokland.

The thesis has been successfully defended.

For more information, please contact: Birgitta Lindskog Stokland
Telephone: +46 (0)706 323 522, +46 (0)31 741 2255
Email: Birgitta.lindskog-stokland@odontologi.gu.se, Birgitta.Lindskog-Stokland@vgregion.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/25486

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>