Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing the Tooth Implant Two-Step

23.05.2012
Two-step tooth implantation and built-up bone can be longer lasting, TAU researcher discovers
Periodontists routinely grow bone in the mouth to guarantee a stable environment for teeth and tooth implants. But whether it's better to build up bone before placing the implant, or to simply place the implant and allow bone to grow around it, has been a subject of considerable medical debate.

Now Prof. Zvi Artzi of Tel Aviv University's Maurice and Gabriela Goldschleger School of Dentistry at the Sackler Faculty of Medicine has completed a study that concludes the two-step method is the more effective alternative — building bone first, then implanting and allowing further bone growth. Currently, many dental professionals prefer a one-step process to save their patients from an additional surgical procedure.

Published in the Journal of Clinical Periodontology, Prof. Artzi's study shows that a one-step implant will show more wear and tear over time than one implanted through the more cautious two-step procedure. While both are clinically effective methods, he concludes, implant placement procedures done with the one-step method show greater bone resorption around the implant neck — a process by which the bone is broken down. Bonding of the bone around the implant was also shown to be inferior.

Testing proven procedures

The successful placement of a tooth implant is based on the biocompatibility of titanium, the main component of most dental and orthopedic implants. Both animal and human tissues readily accept the implant and grow around it. But in many cases, the amount of bone is also crucial to the success of the implant. Building bone to stabilize a titanium fixture is a long-standing procedure in dentistry.

Periodontists typically choose either the one-step or two-step procedure based on their preference alone. So Prof. Artzi and his fellow researchers set out to determine which procedure was scientifically superior in the long-term, well past the time when periodontists would typically monitor a patient's progress. In their study, they compared both methods of implantation in lab animals, and followed the progress of the implants over a course of two years.

The one-step procedure is based on the idea that a bone graft will simply attract the surrounding tissue to build up bone around the titanium implant — a process called conduction. The benefit of this procedure is that patients are only subjected to one surgery. But the study shows a difference in long-term efficacy, Prof. Artzi says. Ultimately, the bone recedes less in the more cautious two-step procedure. The quality of the resulting bone itself is similar.

A judgement call

Though the study proves that the two-step method is more advantageous in most cases, each case is different, says Prof. Artzi. For example, dental professionals also take into account the already existing bone – which determines how stable a future implant will be – before deciding which route to take with each individual patient. Clinically, both methods remain sound, and periodontists should still rely on their own judgement as to what is best for the patient.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Implant bacteria Tooth Two-Step Chemical Process human tissue

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>