Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doing the Tooth Implant Two-Step

23.05.2012
Two-step tooth implantation and built-up bone can be longer lasting, TAU researcher discovers
Periodontists routinely grow bone in the mouth to guarantee a stable environment for teeth and tooth implants. But whether it's better to build up bone before placing the implant, or to simply place the implant and allow bone to grow around it, has been a subject of considerable medical debate.

Now Prof. Zvi Artzi of Tel Aviv University's Maurice and Gabriela Goldschleger School of Dentistry at the Sackler Faculty of Medicine has completed a study that concludes the two-step method is the more effective alternative — building bone first, then implanting and allowing further bone growth. Currently, many dental professionals prefer a one-step process to save their patients from an additional surgical procedure.

Published in the Journal of Clinical Periodontology, Prof. Artzi's study shows that a one-step implant will show more wear and tear over time than one implanted through the more cautious two-step procedure. While both are clinically effective methods, he concludes, implant placement procedures done with the one-step method show greater bone resorption around the implant neck — a process by which the bone is broken down. Bonding of the bone around the implant was also shown to be inferior.

Testing proven procedures

The successful placement of a tooth implant is based on the biocompatibility of titanium, the main component of most dental and orthopedic implants. Both animal and human tissues readily accept the implant and grow around it. But in many cases, the amount of bone is also crucial to the success of the implant. Building bone to stabilize a titanium fixture is a long-standing procedure in dentistry.

Periodontists typically choose either the one-step or two-step procedure based on their preference alone. So Prof. Artzi and his fellow researchers set out to determine which procedure was scientifically superior in the long-term, well past the time when periodontists would typically monitor a patient's progress. In their study, they compared both methods of implantation in lab animals, and followed the progress of the implants over a course of two years.

The one-step procedure is based on the idea that a bone graft will simply attract the surrounding tissue to build up bone around the titanium implant — a process called conduction. The benefit of this procedure is that patients are only subjected to one surgery. But the study shows a difference in long-term efficacy, Prof. Artzi says. Ultimately, the bone recedes less in the more cautious two-step procedure. The quality of the resulting bone itself is similar.

A judgement call

Though the study proves that the two-step method is more advantageous in most cases, each case is different, says Prof. Artzi. For example, dental professionals also take into account the already existing bone – which determines how stable a future implant will be – before deciding which route to take with each individual patient. Clinically, both methods remain sound, and periodontists should still rely on their own judgement as to what is best for the patient.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Implant bacteria Tooth Two-Step Chemical Process human tissue

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>