Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tools for more accurate dosage of drugs against HIV/AIDS and malaria

06.03.2009
A doctoral thesis presented at the Sahlgrenska Academy, University of Gothenburg, Sweden, shows that it is possible to describe and quantify the relationships between dose, concentration and effectiveness of several drugs against HIV/AIDS and malaria. The method may allow improved treatment and fewer undesired effects for patients with these diseases.

Registered pharmacist Daniel Röshammar has in his thesis studied the optimal use of certain pharmaceutical substances that are used to combat HIV/AIDS and malaria. He has analysed, among other things, data from 121 healthy volunteers from Uganda using a mathematical model known as a pharmacometric model.

The study showed that both sex and genetic differences between individuals influence the way in which the body metabolises efavirenz, which is part of some anti-HIV/AIDS drugs. Other studies have focussed on 74 people from Zimbabwe with HIV/AIDS, and showed that a reduction in the daily dose of efavirenz from 600 mg to 400 mg can reduce the risk of undesired effects in those affected who have a genetically conditioned poorer ability to catabolise the substance.

"Many HIV/AIDS patients are treated with efavirenz, and they should be genetically tested using a blood test before deciding on a dose. This is particularly important in Africa, where the fraction of patients with a poorer catabolic ability is greater than it is elsewhere", says Daniel Röshammar.

Repeated measurements of the drug concentrations and virus levels in 239 previously untreated Scandinavian patients with HIV/AIDS allowed a similar model to be used in order to study the antiretroviral effects of anti-HIV/AIDS drugs. Calculations showed that treatment in which efavirenz was combined with other pharmaceutical substances was more effective than two other frequently used combination treatments.

"It may be possible in the future to use the model to predict when the treatment will loose its effectiveness for an individual patient, and explain why", says Daniel Röshammar.

Further work involved using a model to describe how the catabolism of the anti-malarial drug artemisinin increases and the concentration of the drug decreases when patients take this drug. When artemisinin was given to 97 patients in Vietnam without other drugs, approximately 37% of them were affected by recrudescent malaria. The model showed that this could not be explained solely by low drug concentrations. Another anti-malarial drug, piperaquine, may be a suitable partner for artemisinin in the treatment of malaria. An investigation of 12 Vietnamese study subjects, however, allowed scientists to estimate that the levels of piperaquine that remain in the body are too low to be effective, and this increases the risk that the malaria parasite will develop resistance.

"Research shows that pharmacometric models can be adapted to patient data in order to understand the relationships between drug concentration, effectiveness and the progress of disease, while at the same time taking into consideration differences between patients such as, for example, weight, age, sex, genetic factors, other diseases and other drugs. We expect that these tools will be important in the fight against HIV/AIDS and malaria", says Daniel Röshammar.

The thesis has been written by:
Registered pharmacist Daniel Röshammar, telephone: +46 733 924602, e-mail: daniel.roshammar@pharm.gu.se
Supervisor:
Professor Michael Ashton, telephone: +46 31 786 3412, e-mail: michael.ashton@pharm.gu.se
The thesis has been presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Neuroscience and Physiology

Title of the thesis: Applied Population Pharmacokinetic/Pharmacodynamic Modeling of Antiretroviral and Antimalarial Drug Therapy

Press information: Ulrika Lundin
Public relations officer, Sahlgrenska Academy at the University of Gothenburg
Telephone: +46 31 786 3869, +46 70-775 8851
e-mail: ulrika.lundin@sahlgrenska.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19044 -

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>