Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tonsils Make T-Cells, Too, Ohio State Study Shows

06.03.2012
  • T lymphocytes, or T cells, are essential for effective immune responses.
  • T cells were thought to be produced only in the thymus gland.
  • This study shows that T cells are also produced in the tonsils, a discovery that could improve stem-cell transplantation and the understanding of T-cell cancers and autoimmune diseases.

A new study provides evidence that a critical type of immune cell can develop in human tonsils. The cells, called T lymphocytes, or T cells, have been thought to develop only in the thymus, an organ of the immune system that sits on the heart.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), could improve the understanding of T-cell cancers and autoimmune diseases, and how stem-cell transplantation is done.

The study identified T cells at five distinct stages of development in the tonsil. These stages, identified using molecular signposts on the cells, were very similar to the stages of T-cell development in the thymus, although some differences were found as well.

The study also discovered that the cells develop in a particular region of the tonsil, in areas near the fibrous scaffold of the tonsil.

The findings are published in the Journal of Clinical Investigation.

“We’ve known for a long time that a functional thymus is necessary to develop a complete repertoire of T-cells, but whether a T-cell factory existed outside the thymus has been controversial,” says principal investigator Dr. Michael A. Caligiuri, director of Ohio State’s Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute.

“I believe our study answers that question. It is the first report to describe a comprehensive, stepwise model for T-cell development outside the thymus.”

It also raises a number of questions. Caligiuri notes that it’s still unclear whether T-cells that develop in the tonsil also mature there or whether they leave the tonsil to mature elsewhere.

“The complete implications of this phenomenon for human health and disease are not entirely known,” adds first-author Susan McClory, a graduate fellow in Caligiuri’s laboratory. “It could be important in the development of T-cell cancers and autoimmune diseases, or it might suggest a location for T-cell development when thymus function is poor. We hope to do additional studies to explore these possibilities,” she says.

Caligiuri, McClory and their colleagues conducted the study using tonsil tissue obtained from children undergoing routine tonsillectomy at Nationwide Children’s Hospital in Columbus, and thymic tissue obtained from children undergoing thoracic surgery.

Using the molecular features of T-cells as they develop in the thymus, the researchers identified five populations of maturing T cells in the tonsils. They found, for example, that the first two of those groups resembled cells of the earliest stages of T cells that developed in the thymus, while cells in the fifth group were similar to nearly mature T-cells in the thymus.

They also showed that all five of the cell groups had the capacity to develop into T cells in laboratory tests, and that the first four populations had the capacity to develop into immune cells called natural killer cells.

“Overall, our work suggests that the tonsils serve as a T-cell factory, along with the thymus,” Caligiuri says. “Next, we need to learn what proportion of T-cells is derived within the tonsil compared with the thymus.”

Funding from the National Cancer Institute supported this research.

Other researchers involved in this study were Tiffany Hughes, Edward Briercheck, Chelsea Martin, Anthony J. Trimboli, Jianhua Yu, Xiaoli Zhang, Gustavo Leone and Gerard Nuovo of Ohio State University; and Aharon G. Freud of Stanford University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 40 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu
http://cancer.osu.edu/mediaroom/releases/Pages/TONSILS-MAKE-T-CELLS.aspx

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>