Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tonsils Make T-Cells, Too, Ohio State Study Shows

06.03.2012
  • T lymphocytes, or T cells, are essential for effective immune responses.
  • T cells were thought to be produced only in the thymus gland.
  • This study shows that T cells are also produced in the tonsils, a discovery that could improve stem-cell transplantation and the understanding of T-cell cancers and autoimmune diseases.

A new study provides evidence that a critical type of immune cell can develop in human tonsils. The cells, called T lymphocytes, or T cells, have been thought to develop only in the thymus, an organ of the immune system that sits on the heart.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James), could improve the understanding of T-cell cancers and autoimmune diseases, and how stem-cell transplantation is done.

The study identified T cells at five distinct stages of development in the tonsil. These stages, identified using molecular signposts on the cells, were very similar to the stages of T-cell development in the thymus, although some differences were found as well.

The study also discovered that the cells develop in a particular region of the tonsil, in areas near the fibrous scaffold of the tonsil.

The findings are published in the Journal of Clinical Investigation.

“We’ve known for a long time that a functional thymus is necessary to develop a complete repertoire of T-cells, but whether a T-cell factory existed outside the thymus has been controversial,” says principal investigator Dr. Michael A. Caligiuri, director of Ohio State’s Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute.

“I believe our study answers that question. It is the first report to describe a comprehensive, stepwise model for T-cell development outside the thymus.”

It also raises a number of questions. Caligiuri notes that it’s still unclear whether T-cells that develop in the tonsil also mature there or whether they leave the tonsil to mature elsewhere.

“The complete implications of this phenomenon for human health and disease are not entirely known,” adds first-author Susan McClory, a graduate fellow in Caligiuri’s laboratory. “It could be important in the development of T-cell cancers and autoimmune diseases, or it might suggest a location for T-cell development when thymus function is poor. We hope to do additional studies to explore these possibilities,” she says.

Caligiuri, McClory and their colleagues conducted the study using tonsil tissue obtained from children undergoing routine tonsillectomy at Nationwide Children’s Hospital in Columbus, and thymic tissue obtained from children undergoing thoracic surgery.

Using the molecular features of T-cells as they develop in the thymus, the researchers identified five populations of maturing T cells in the tonsils. They found, for example, that the first two of those groups resembled cells of the earliest stages of T cells that developed in the thymus, while cells in the fifth group were similar to nearly mature T-cells in the thymus.

They also showed that all five of the cell groups had the capacity to develop into T cells in laboratory tests, and that the first four populations had the capacity to develop into immune cells called natural killer cells.

“Overall, our work suggests that the tonsils serve as a T-cell factory, along with the thymus,” Caligiuri says. “Next, we need to learn what proportion of T-cells is derived within the tonsil compared with the thymus.”

Funding from the National Cancer Institute supported this research.

Other researchers involved in this study were Tiffany Hughes, Edward Briercheck, Chelsea Martin, Anthony J. Trimboli, Jianhua Yu, Xiaoli Zhang, Gustavo Leone and Gerard Nuovo of Ohio State University; and Aharon G. Freud of Stanford University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 40 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 210-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Medical Center Public Affairs and Media Relations,
614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu
http://cancer.osu.edu/mediaroom/releases/Pages/TONSILS-MAKE-T-CELLS.aspx

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>