Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tokyo Tech researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients

28.08.2012
Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

Tokyo Institute of Technology researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients.


Schematic illustration and components of the WalkMate system. Copyright : Tokyo Institute of Technology

Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

The technology is also described in the August issue of Tokyo Institute of Technology Bulletin: http://www.titech.ac.jp/bulletin/index.html

The unintentional synchronizing of people’s gait as they walk together is a familiar phenomenon. Understanding the mechanisms behind this synchronization could help people with a disturbed gait, such as patients suffering from Parkinson’s disease. Research by Yoshihiro Miyake at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology has helped to demystify the process and led to a new walking support device – ‘Walk Mate’.

Yoshihiro Miyake investigated coupled walking processes between a walking robot and a walking person. The study included people with a healthy gait and people suffering from Parkinson’s disease or hemiplegia due to brain infraction. He used the timing of the walking person as a sensory input for the robot and the sound of a walking rhythm as the robot’s output. An algorithm based on travelling wave dynamics controlled the timing difference between the Walk Mate’s input and output.
The study revealed how people adjust their pace in response to the robot’s audible output. Patients’ stride patterns were healthier using ‘Walk Mate’ and they reported a greater stability and “sense of togetherness” compared with more traditional walking aids that have a fixed rhythm. Further studies in collaboration with researchers at the Max Planck Institute for Human Cognitive and Brain Sciences and the Department of Neurology at Kanto Central Hospital have underlined the great potential of the device.

“Our approach offers a flexible, portable, low-cost, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients,” say the inventors.
Further information:
Miwako Kato and Yukiko Tokida, Center for Public Information
Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975, Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.
Associated links
http://www.titech.ac.jp/bulletin/innovation.html
Journal information
Further information
[1] Miyake Y (2009) Interpersonal Synchronization of Body Motion and the Walk-MateWalking Support Robot IEEE Transactions on robotics 25(3): 638-644. Doi: 10.1109/TRO.2009.2020350

[2] Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson’s Patients. PLoS ONE 7(3): e32600. doi:10.1371/journal.pone.0032600

Yoshihiro Miyake website: http://www.myk.dis.titech.ac.jp/2007hp/english/english.html

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>