Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tokyo Tech researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients

28.08.2012
Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

Tokyo Institute of Technology researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients.


Schematic illustration and components of the WalkMate system. Copyright : Tokyo Institute of Technology

Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

The technology is also described in the August issue of Tokyo Institute of Technology Bulletin: http://www.titech.ac.jp/bulletin/index.html

The unintentional synchronizing of people’s gait as they walk together is a familiar phenomenon. Understanding the mechanisms behind this synchronization could help people with a disturbed gait, such as patients suffering from Parkinson’s disease. Research by Yoshihiro Miyake at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology has helped to demystify the process and led to a new walking support device – ‘Walk Mate’.

Yoshihiro Miyake investigated coupled walking processes between a walking robot and a walking person. The study included people with a healthy gait and people suffering from Parkinson’s disease or hemiplegia due to brain infraction. He used the timing of the walking person as a sensory input for the robot and the sound of a walking rhythm as the robot’s output. An algorithm based on travelling wave dynamics controlled the timing difference between the Walk Mate’s input and output.
The study revealed how people adjust their pace in response to the robot’s audible output. Patients’ stride patterns were healthier using ‘Walk Mate’ and they reported a greater stability and “sense of togetherness” compared with more traditional walking aids that have a fixed rhythm. Further studies in collaboration with researchers at the Max Planck Institute for Human Cognitive and Brain Sciences and the Department of Neurology at Kanto Central Hospital have underlined the great potential of the device.

“Our approach offers a flexible, portable, low-cost, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients,” say the inventors.
Further information:
Miwako Kato and Yukiko Tokida, Center for Public Information
Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975, Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.
Associated links
http://www.titech.ac.jp/bulletin/innovation.html
Journal information
Further information
[1] Miyake Y (2009) Interpersonal Synchronization of Body Motion and the Walk-MateWalking Support Robot IEEE Transactions on robotics 25(3): 638-644. Doi: 10.1109/TRO.2009.2020350

[2] Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson’s Patients. PLoS ONE 7(3): e32600. doi:10.1371/journal.pone.0032600

Yoshihiro Miyake website: http://www.myk.dis.titech.ac.jp/2007hp/english/english.html

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>