Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tokyo Tech researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients

28.08.2012
Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

Tokyo Institute of Technology researchers develop the WalkMate System for improving the quality of life of Parkinson’s disease patients.


Schematic illustration and components of the WalkMate system. Copyright : Tokyo Institute of Technology

Tokyo Tech ‘s Yoshihiro Miyake and colleagues have developed an innovative, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients.

The technology is also described in the August issue of Tokyo Institute of Technology Bulletin: http://www.titech.ac.jp/bulletin/index.html

The unintentional synchronizing of people’s gait as they walk together is a familiar phenomenon. Understanding the mechanisms behind this synchronization could help people with a disturbed gait, such as patients suffering from Parkinson’s disease. Research by Yoshihiro Miyake at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology has helped to demystify the process and led to a new walking support device – ‘Walk Mate’.

Yoshihiro Miyake investigated coupled walking processes between a walking robot and a walking person. The study included people with a healthy gait and people suffering from Parkinson’s disease or hemiplegia due to brain infraction. He used the timing of the walking person as a sensory input for the robot and the sound of a walking rhythm as the robot’s output. An algorithm based on travelling wave dynamics controlled the timing difference between the Walk Mate’s input and output.
The study revealed how people adjust their pace in response to the robot’s audible output. Patients’ stride patterns were healthier using ‘Walk Mate’ and they reported a greater stability and “sense of togetherness” compared with more traditional walking aids that have a fixed rhythm. Further studies in collaboration with researchers at the Max Planck Institute for Human Cognitive and Brain Sciences and the Department of Neurology at Kanto Central Hospital have underlined the great potential of the device.

“Our approach offers a flexible, portable, low-cost, non-invasive therapeutic intervention that may improve the mobility, stability, and quality of life of Parkinson’s disease patients,” say the inventors.
Further information:
Miwako Kato and Yukiko Tokida, Center for Public Information
Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975, Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.
Associated links
http://www.titech.ac.jp/bulletin/innovation.html
Journal information
Further information
[1] Miyake Y (2009) Interpersonal Synchronization of Body Motion and the Walk-MateWalking Support Robot IEEE Transactions on robotics 25(3): 638-644. Doi: 10.1109/TRO.2009.2020350

[2] Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y (2012) Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson’s Patients. PLoS ONE 7(3): e32600. doi:10.1371/journal.pone.0032600

Yoshihiro Miyake website: http://www.myk.dis.titech.ac.jp/2007hp/english/english.html

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>