Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New TMS clinic offers noninvasive treatment for major depression

09.11.2009
Rush University Medical Center has opened the Transcranial Magnetic Stimulation (TMS) Clinic to offer patients suffering from major depression a safe, effective, non-drug treatment. TMS therapy is the first FDA-approved, non-invasive antidepressant device-based treatment clinically proven for treatment of depression.

Psychiatrists at Rush University Medical Center were among the first to test the technique and Dr. Philip Janicak, professor of psychiatry and lead investigator at Rush for the clinical trials of TMS, helped to develop this therapy.

The TMS therapy system delivers highly focused magnetic field pulses to a specific portion of the brain, the left prefrontal cortex, in order to stimulate the areas of the brain linked to depression. The repeated short bursts of magnetic energy introduced through the scalp excite neurons in the brain.

Depression affects at least 14 million American adults each year. Researchers estimate that by the year 2020, depression will be the second leading cause of disability worldwide. According to Janicak, drug treatment options can be ineffective or intolerable due to side effects. Current antidepressant therapies are not beneficial for at least a third of depressed individuals, leaving many with a lack of adequate treatment options.

"Patients receive treatment in an outpatient setting and are able to return to normal activities right away." TMS therapy does not require anesthesia or sedation and patients remain awake and alert. It is a 40-minute outpatient procedure that is prescribed by a psychiatrist and administered daily for four-to-six weeks.

"TMS therapy is a safe and effective alternative for patients who suffer from major depressive disorder and are not getting satisfactory improvement from antidepressant medications," said Janicak.

For those interested in more information about the TMS clinic at Rush, call 888-762-2222.

About Rush University Medical Center:

Rush University Medical Center includes a 674-bed (staffed) hospital; the Johnston R. Bowman Health Center; and Rush University (Rush Medical College, College of Nursing, College of Health Sciences and the Graduate College).

Rush is currently constructing a 14-floor, 806,000-square-foot hospital building at the corner of Ashland Avenue and Congress Parkway. The new hospital, scheduled to open in 2012, is the centerpiece of a $1-billion, 10-year campus redevelopment plan called the Rush Transformation, which also includes a new orthopedics building (to open in Fall 2009), a new parking garage and central power plant completed in June 2009, renovations of selected existing buildings and demolition of obsolete buildings. The new hospital is being designed and built to conserve energy and water, reduce waste and use sustainable building materials. Rush is seeking Leadership in Energy and Environmental Design (LEED) gold certification from the U.S. Green Building Council. It will be the first full-service "green" hospital in Chicago.

Rush's mission is to provide the best possible care for our patients. Educating tomorrow's health care professional, researching new and more advanced treatment options, transforming our facilities and investing in new technologies—all are undertaken with the drive to improve patient care now, and for the future.

Deborah Song | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>