Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue regeneration using anti-inflammatory nanomolecules

25.08.2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness.

These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological programs are activated to aid in tissue regeneration. An inflammatory response acts as a protective mechanism to enable repair and regeneration, helping the body to heal after injuries such as wounds and burns.

However, the same mechanism may interfere with healing in situations in which foreign material is introduced, for example when synthetics are grafted to skin for dermal repair. In such cases, the inflammation may lead to tissue fibrosis, which creates an obstacle to proper physiological function.

The research group of Arun Sharma, PhD has been working on innovative approaches to tissue regeneration in order to improve the lives of patients with urinary bladder dysfunction. Among their breakthroughs was a medical model for regenerating bladders using stem cells harvested from a donor’s own bone marrow, reported in the Proceedings of the National Academy of Sciences in 2013

More recently, the team has developed a system that may protect against the inflammatory reaction that can negatively impact tissue growth, development and function. Self-assembling peptide amphiphiles (PAs) are biocompatible and biodegradable nanomaterials that have demonstrated utility in a wide range of settings and applications.

Using an established urinary bladder augmentation model, the Sharma Group treated a highly pro-inflammatory biologic scaffold used in a wide array of settings with anti-inflammatory peptide amphiphiles (AIF-PAs). When compared with control PAs, the treated scaffold showed regenerative capacity while modulating the innate inflammatory response, resulting in superior bladder function.

This work is published in the journal Biomaterials. Says Sharma, “Our findings are very relevant not just for bladder regeneration but for other types of tissue regeneration where foreign materials are utilized for structural support. I also envision the potential utility of these nanomolecules for the treatment of a wide range of dysfunctional inflammatory based conditions.”

Arun K. Sharma, PhD is Director of Pediatric Urological Regenerative Medicine at Ann & Robert H. Lurie Children's Hospital of Chicago; Director of Surgical Research at Stanley Manne Children’s Research Institute; Assistant Professor in the Departments of Urology and Biomedical Engineering at Northwestern University Feinberg School of Medicine and Northwestern University; and a member of the Developmental Biology Program of the research institute.

The research team includes members of the Departments of Urology and Medicine at the Feinberg School; Institute for BioNanotechnology in Medicine and the Departments of Biomedical Engineering, Materials Science and Engineering, and Chemical and Biological Engineering at Northwestern University, and the Department of Urology at Loyola University Health System.

This work was performed in collaboration with the Stupp Laboratory at the Institute for BioNanotechnology in Medicine.

Full citation: Bury MI, Fuller NJ, Meisner JW, Hofer MD, Webber MJ, Chow LW, Prasad S, Thaker H, Yue X, Menon VS, Diaz EC, Stupp SI, Cheng EY, Sharma AK. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials. Available online 18 August 2014.


Copies of this paper are available to credentialed journalists upon request; please contact Elsevier’s Newsroom at newsroom@elsevier.com or +31 20 4853564. 

Biomaterials is an international journal covering the science and clinical application of biomaterials. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. Biomaterials is published by Elsevier.

Stanley Manne Children's Research Institute is the research arm of Ann & Robert H. Lurie Children's Hospital of Chicago, the pediatric teaching hospital for Northwestern University Feinberg School of Medicine. The research institute is also one of the interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research institute are full-time faculty members.

For more information contact Peggy Murphy at 773.755.7485 or pemurphy@luriechildrens.org.

Peggy Murphy | Eurek Alert!
Further information:
https://www.luriechildrens.org/en-us/news-events/Pages/tissue_regeneration_using_anti-inflammatory_nanomolecules_147.aspx

Further reports about: Biomedical Medicine Sharma Tissue anti-inflammatory biomaterials function inflammatory mechanism scaffold

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>