Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue regeneration using anti-inflammatory nanomolecules

25.08.2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness.

These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological programs are activated to aid in tissue regeneration. An inflammatory response acts as a protective mechanism to enable repair and regeneration, helping the body to heal after injuries such as wounds and burns.

However, the same mechanism may interfere with healing in situations in which foreign material is introduced, for example when synthetics are grafted to skin for dermal repair. In such cases, the inflammation may lead to tissue fibrosis, which creates an obstacle to proper physiological function.

The research group of Arun Sharma, PhD has been working on innovative approaches to tissue regeneration in order to improve the lives of patients with urinary bladder dysfunction. Among their breakthroughs was a medical model for regenerating bladders using stem cells harvested from a donor’s own bone marrow, reported in the Proceedings of the National Academy of Sciences in 2013

More recently, the team has developed a system that may protect against the inflammatory reaction that can negatively impact tissue growth, development and function. Self-assembling peptide amphiphiles (PAs) are biocompatible and biodegradable nanomaterials that have demonstrated utility in a wide range of settings and applications.

Using an established urinary bladder augmentation model, the Sharma Group treated a highly pro-inflammatory biologic scaffold used in a wide array of settings with anti-inflammatory peptide amphiphiles (AIF-PAs). When compared with control PAs, the treated scaffold showed regenerative capacity while modulating the innate inflammatory response, resulting in superior bladder function.

This work is published in the journal Biomaterials. Says Sharma, “Our findings are very relevant not just for bladder regeneration but for other types of tissue regeneration where foreign materials are utilized for structural support. I also envision the potential utility of these nanomolecules for the treatment of a wide range of dysfunctional inflammatory based conditions.”

Arun K. Sharma, PhD is Director of Pediatric Urological Regenerative Medicine at Ann & Robert H. Lurie Children's Hospital of Chicago; Director of Surgical Research at Stanley Manne Children’s Research Institute; Assistant Professor in the Departments of Urology and Biomedical Engineering at Northwestern University Feinberg School of Medicine and Northwestern University; and a member of the Developmental Biology Program of the research institute.

The research team includes members of the Departments of Urology and Medicine at the Feinberg School; Institute for BioNanotechnology in Medicine and the Departments of Biomedical Engineering, Materials Science and Engineering, and Chemical and Biological Engineering at Northwestern University, and the Department of Urology at Loyola University Health System.

This work was performed in collaboration with the Stupp Laboratory at the Institute for BioNanotechnology in Medicine.

Full citation: Bury MI, Fuller NJ, Meisner JW, Hofer MD, Webber MJ, Chow LW, Prasad S, Thaker H, Yue X, Menon VS, Diaz EC, Stupp SI, Cheng EY, Sharma AK. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials. Available online 18 August 2014.


Copies of this paper are available to credentialed journalists upon request; please contact Elsevier’s Newsroom at newsroom@elsevier.com or +31 20 4853564. 

Biomaterials is an international journal covering the science and clinical application of biomaterials. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. Biomaterials is published by Elsevier.

Stanley Manne Children's Research Institute is the research arm of Ann & Robert H. Lurie Children's Hospital of Chicago, the pediatric teaching hospital for Northwestern University Feinberg School of Medicine. The research institute is also one of the interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research institute are full-time faculty members.

For more information contact Peggy Murphy at 773.755.7485 or pemurphy@luriechildrens.org.

Peggy Murphy | Eurek Alert!
Further information:
https://www.luriechildrens.org/en-us/news-events/Pages/tissue_regeneration_using_anti-inflammatory_nanomolecules_147.aspx

Further reports about: Biomedical Medicine Sharma Tissue anti-inflammatory biomaterials function inflammatory mechanism scaffold

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>