Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue regeneration using anti-inflammatory nanomolecules

25.08.2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness.

These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological programs are activated to aid in tissue regeneration. An inflammatory response acts as a protective mechanism to enable repair and regeneration, helping the body to heal after injuries such as wounds and burns.

However, the same mechanism may interfere with healing in situations in which foreign material is introduced, for example when synthetics are grafted to skin for dermal repair. In such cases, the inflammation may lead to tissue fibrosis, which creates an obstacle to proper physiological function.

The research group of Arun Sharma, PhD has been working on innovative approaches to tissue regeneration in order to improve the lives of patients with urinary bladder dysfunction. Among their breakthroughs was a medical model for regenerating bladders using stem cells harvested from a donor’s own bone marrow, reported in the Proceedings of the National Academy of Sciences in 2013

More recently, the team has developed a system that may protect against the inflammatory reaction that can negatively impact tissue growth, development and function. Self-assembling peptide amphiphiles (PAs) are biocompatible and biodegradable nanomaterials that have demonstrated utility in a wide range of settings and applications.

Using an established urinary bladder augmentation model, the Sharma Group treated a highly pro-inflammatory biologic scaffold used in a wide array of settings with anti-inflammatory peptide amphiphiles (AIF-PAs). When compared with control PAs, the treated scaffold showed regenerative capacity while modulating the innate inflammatory response, resulting in superior bladder function.

This work is published in the journal Biomaterials. Says Sharma, “Our findings are very relevant not just for bladder regeneration but for other types of tissue regeneration where foreign materials are utilized for structural support. I also envision the potential utility of these nanomolecules for the treatment of a wide range of dysfunctional inflammatory based conditions.”

Arun K. Sharma, PhD is Director of Pediatric Urological Regenerative Medicine at Ann & Robert H. Lurie Children's Hospital of Chicago; Director of Surgical Research at Stanley Manne Children’s Research Institute; Assistant Professor in the Departments of Urology and Biomedical Engineering at Northwestern University Feinberg School of Medicine and Northwestern University; and a member of the Developmental Biology Program of the research institute.

The research team includes members of the Departments of Urology and Medicine at the Feinberg School; Institute for BioNanotechnology in Medicine and the Departments of Biomedical Engineering, Materials Science and Engineering, and Chemical and Biological Engineering at Northwestern University, and the Department of Urology at Loyola University Health System.

This work was performed in collaboration with the Stupp Laboratory at the Institute for BioNanotechnology in Medicine.

Full citation: Bury MI, Fuller NJ, Meisner JW, Hofer MD, Webber MJ, Chow LW, Prasad S, Thaker H, Yue X, Menon VS, Diaz EC, Stupp SI, Cheng EY, Sharma AK. The promotion of functional urinary bladder regeneration using anti-inflammatory nanofibers. Biomaterials. Available online 18 August 2014.


Copies of this paper are available to credentialed journalists upon request; please contact Elsevier’s Newsroom at newsroom@elsevier.com or +31 20 4853564. 

Biomaterials is an international journal covering the science and clinical application of biomaterials. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. Biomaterials is published by Elsevier.

Stanley Manne Children's Research Institute is the research arm of Ann & Robert H. Lurie Children's Hospital of Chicago, the pediatric teaching hospital for Northwestern University Feinberg School of Medicine. The research institute is also one of the interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research institute are full-time faculty members.

For more information contact Peggy Murphy at 773.755.7485 or pemurphy@luriechildrens.org.

Peggy Murphy | Eurek Alert!
Further information:
https://www.luriechildrens.org/en-us/news-events/Pages/tissue_regeneration_using_anti-inflammatory_nanomolecules_147.aspx

Further reports about: Biomedical Medicine Sharma Tissue anti-inflammatory biomaterials function inflammatory mechanism scaffold

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>