Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny tool to control growing blood vessels opens new potential in tumor research

24.02.2009
Researchers at Uppsala University have developed a new tool that makes it possible to study the signals in the body that control the generation of blood vessels. The researchers' findings, published in the new issue of Lab on a Chip, enable scientists to determine what signals in the body attract or repel blood vessels, knowledge that is extremely interesting in tumor research.

The new invention is a tiny cell cultivation chamber of silicon plastic in which researchers can cultivate blood-vessel-rich tissue and simultaneously create targeted signals that instruct the vessels to go in a certain direction. This is of great interest to the international research world.

Angiogenesis is the process in the body that forms new blood cells, a process that is vital for life but can also be fatal in the worst case. Angiogenesis is desirable, for instance, in connection with wound healing, when new tissue needs to be grown. Undesirable angiogenesis, on the other hand, often occurs in connection with tumor growth.

Through the newly generated blood vessels in the vicinity of the tumor, tumor cells receive nourishment and oxygen, which creates the conditions for tumor growth. One way to limit tumor growth may therefore be to counteract the new formation of blood vessels in the tumor, thereby cutting off the supply of nourishment and oxygen to the diseased area.

The scientists Irmeli Berkefors and Johan Kreuger's research is geared toward understanding the signals that control both normal and pathological angiogenesis. To understand this, it is important to construct experimental model systems in which they can study how concentration gradients of various signal proteins affect the direction in which a vessel grows.

"Our new method enables us to recreate and study gradients that control how blood vessels grow in the body. This is something of a research breakthrough. Now we can systematically evaluate newly identified signals that we hope can ultimately be used to control angiogenesis," says Johan Kreuger.

The method can also be used to unearth new knowledge regarding how tumor cells and nerve cells grow and move toward gradients of signal proteins.

Johan Kreuger | EurekAlert!
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>