Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cause of thyroid hormone deficiency discovered

13.11.2012
Newly-found genetic cause of hypothyroidism more prevalent in males than in females

International researchers, including a team at McGill University, have discovered a new cause for thyroid hormone deficiency, or hypothyroidism.

This common endocrine disorder is typically caused by problems of the thyroid gland, and more rarely, by defects in the brain or the pituitary gland (hypophysis). However, a new cause of the disease has been discovered from an unsuspected source and is reported in the journal Nature Genetics.

The scientists, led by McGill Professor Daniel Bernard, Department of Pharmacology and Therapeutics in the Faculty of Medicine, identified a new hereditary form of hypothyroidism that is more prevalent in males than in females. This sex bias shone a light on where to look for the underlying cause.

"Our collaborators in the Netherlands had been following a family in which two cousins had an unusual syndrome of hypothyroidisim and enlarged testicles," said Prof. Bernard. "Using state-of-the-art DNA sequencing technologies, we identified a mutation in a gene called immunoglobulin superfamily, member 1 (IGSF1), in both boys and their maternal grandfather. As one of few labs in the world studying this gene, we initiated a collaboration to determine whether the observed mutation might cause the disorder. At the time, the IGSF1 gene was known to be active in the pituitary gland, but its function was a mystery".

"Shortly after, we were contacted independently by a second group of researchers, studying a second family, in which two young brothers suffered from hypothyroidism and also harbored a mutation in the IGSF1 gene, though it was a different mutation than that observed in the Dutch family," said Prof. Bernard, "The fact that there were two unrelated families with the same male-biased clinical syndrome and mutations in the same gene strongly suggested that the mutations played a causal role in hypothyroidism".

The groups reached out to researchers in the Netherlands, the UK, Italy and Australia who were following similar families and found that affected males all had mutations in their IGSF1 gene. Overall, the team identified 11 families with 10 different mutations in IGSF1.

"We went on to show that mutations in IGSF1 block the protein it encodes from moving to the cell surface, where it normally functions", explained Beata Bak, McGill Ph.D. student and the paper's co-first author. "We also observed that the pituitary glands of mice lacking IGSF1 had reduced levels of the receptor for a brain-derived hormone known as thyrotropin-releasing hormone (TRH). If we think of TRH as a key, then its receptor is the lock into which the key fits to produce its effects. Our results suggest that in the absence of IGSF1, the pituitary gland becomes less sensitive to the brain's instructions to secrete thyroid-stimulating hormone (TSH). As a result, the thyroid gland receives a reduced impetus to produce thyroid hormones".

The group's findings are significant as IGSF1 mutations cause a variable, though principally mild, form of hypothyroidism that would likely escape detection by most perinatal thyroid function screening methodologies. In addition, since the IGSF1 gene is highly polymorphic, there may be many individuals (boys and men, in particular) in the general population with presently undetected, but clinically significant hypothyroidism.

Symptoms of the disease include fatigue, weight gain, cold sensitivity, and muscle weakness. If left untreated, hypothyroidism increases the risk of developing heart disease. In infants, hypothyroidism can cause neurodevelopmental delay and, in extreme circumstances, cretinism.

"A simple test could identify carriers of IGSF1 gene mutations or variants who might benefit from thyroid hormone replacement therapy. Our results highlight a fundamental role for this protein in how the brain and pituitary gland control thyroid function and therefore the whole body metabolism. We hope our work will inspire new research on IGSF1's function in the pituitary gland under various physiological and pathophysiological conditions", said Prof. Bernard.

Chris Chipello | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: TRH gene mutation thyroid function thyroid gland thyroid hormone

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>