Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thymoquinone induced oxidative stress targets highly aggressive prostate cancers

02.06.2010
Researchers at the Tulane University School of Medicine, in New Orleans, LA, have demonstrated that thymoquinone (TQ) a major component of black seed oil (Nigella sativa) can suppress the growth of several aggressive prostate cancer (PCa) cell lines, in vitro.

Although previous studies have shown the anti-proliferative effects of TQ in different types of cancers, the molecular mechanism of this effect of TQ had not been delineated.

Since TQ has a structure similar to ubiquinone, a component of the mitochondrial coenzyme-Q (co-Q) complex, the effect of TQ on free oxygen radical production was investigated. These scientists showed exposure to TQ (20 ¡V 100 ƒÝM) caused a rapid induction of reactive oxygen species (ROS) generation in both LNCaP and C4-2B cells. A precipitous decrease in the level of glutathione (GSH) an intracellular small molecule antioxidant was also found to be responsible for the potent anti-cancer effects of TQ which could be inhibited by exogenous addition of N-acetyl cysteine (NAC) a GSH analog.

Free oxygen radicals are often used as second messengers for mitogenic signaling in tumor cells where a critical balance in ROS generation and its rapid inactivation by antioxidants, can dictate cell growth or apoptosis. These investigators showed significant increases in several cell death (apoptosis) inducing factors, e.g. GAD45Ą and AIF-1, in TQ exposed PCa cells. This study appears in the June 2010 issue of Experimental Biology and Medicine.

Dr. Mondal stated that, "Complementary and alternative medicine (CAM) is becoming very important as an adjunct therapy in cancer patients, both to ameliorate the side effects of chemotherapy as well as to enhance their anti-tumor effects. The low side effect profiles of natural compounds is also an important aspect in their therapeutic utility as an adjunct to anti-tumor therapy. Indeed, in a previous publication (Exp Biol Med; (2009) Apr; 234(4) :442-53) we had shown that at lower concentrations (20 ƒÝM) may be of great advantage towards the development of novel anti-cancer therapeutics, especially against hormone-refractory prostate cancers which are much harder to treat."

The research team led by Dr. Krishna C. Agrawal (posthumously) included Dr. Sandeep Koka, previously a graduate student under Dr. Agrawal, and two other faculty members from Tulane University, Dr. Asim B. Abdel-Mageed and Dr. Debasis Mondal. These investigators successfully tested the hypothesis that TQ induced oxidative stress is responsible for its anti-proliferative effects in prostate cancer cells. Since black seed oil have been used in the middle eastern countries for hundreds of years, the investigators postulated that the active component TQ and possibly the oil itself, can be used effectively, either alone or as an adjunct to chemotherapy, to target highly aggressive prostate cancers.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Koka et al have demonstrated that Thymoquinone efficiently killed hormone-dependent and hormone-independent prostate cancer cells. The mechanism appears to be that Thymoquinone induces oxidative stress and suppresses GSH levels. This suggests that oxidative stress may lead to decreased tumor growth and increased cell death in highly aggressive forms of prostate cancer."

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. Debasis Mondal | EurekAlert!
Further information:
http://www.sebm.org
http://www.ebmonline.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>