Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This necklace hears what you eat

17.03.2016

The food-tracking wearable device may help fight diabetes, obesity and more

Carrots and apples not only taste different. They make distinct sounds when chewed.


This is a prototype of the AutoDietary food tracking system.

Credit: University at Buffalo

This may seem like trivial knowledge, but it's not in the laboratory of University at Buffalo computer scientist Wenyao Xu, who is creating a library that catalogues the unique sounds that foods make as we bite, grind and swallow them.

The library is part of a software package that supports AutoDietary, a high-tech, food-tracking necklace being developed by Xu and researchers at Northeastern University in China.

Described in a study published February by IEEE Sensors Journal, AutoDietary is like Fitbit and other wearable devices. Only instead of tracking burned calories, it monitors caloric intake - in other words, what we eat - at the neck.

"There is no shortage of wearable devices that tell us how many calories we burn, but creating a device that reliably measures caloric intake isn't so easy," says Xu, PhD, assistant professor of computer science in UB's School of Engineering and Applied Sciences.

AutoDietary wraps around the back of the neck like a choker necklace. A tiny high-fidelity microphone - about the size of a zipper pull - records the sounds made during mastication and as the food is swallowed. That data is sent to a smartphone via Bluetooth, where food types are recognized.

The study describes how 12 test subjects, male and female, ages 13 to 49, were given water and six types of food: apples, carrots, potato chips, cookies, peanuts and walnuts. AutoDietary was able to accurately identify the correct food and drink 85 percent of the time.

"Each food, as it's chewed, has its own voice," says Xu, who says the device could someday help people suffering from diabetes, obesity, bowel disorders and other ailments by enabling them to better monitor their food intake and, thus, improve how they manage their conditions.

Xu plans future studies to build upon his library by testing different foods and recording the sounds they make. He also plans to refine the algorithms used to differentiate the foods to improve AutoDietary's ability to recognize what's being eaten.

While promising, a wearable necklace that measures sound has limitations when used alone. For example, it cannot differentiate similar foods such as frosted corn flakes and regular corn flakes. It also can't distinguish the ingredients of complex foods such as soup or chili.

To address these limitations, Xu is planning a biomonitoring device which would complement AutoDietary. The device is underdevelopment but it would be activated once the necklace recognizes that the user is eating a general category of food.

The biomonitor would then determine the nutritional value of the food via blood sugar levels and other measurements. The system then gathers and presents this information on a smartphone, while providing suggestions on healthier eating.

The beauty of the system, Xu says, is that the user isn't overwhelmed by a continuous stream of information. The system is only active as food is consumed and immediately after.

Media Contact

Cory Nealon
cmnealon@buffalo.edu
716-645-4614

 @UBNewsSource

http://www.buffalo.edu 

Cory Nealon | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>