Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy protects lungs from runaway inflammation

13.03.2009
A novel anti-inflammatory therapy designed by Vanderbilt University Medical Center investigators prevents acute lung injury in mice exposed to an inflammation-causing toxin, the researchers report in the journal Molecular Therapy.

The new therapy may offer a way to protect the lungs from the "runaway inflammation" that can accompany bacterial or viral pneumonia, said Jacek Hawiger, M.D., Ph.D., the leader of the research team that has pioneered the new approach.

"Lung inflammation is an extremely perplexing problem," noted Hawiger, chair of the Department of Microbiology & Immunology.

The immune system sometimes overreacts to lung infection and produces excessive concentrations of inflammatory signals (cytokines and chemokines), which can damage the fine architecture of the lungs and lead to life-threatening acute respiratory distress syndrome (ARDS). Such damage is most likely when pneumonia has both viral and bacterial causes – for example from combined influenza and Staphylococcus aureus infections.

"We believe that in addition to controlling the infection with antibacterial and antiviral agents, we need therapies that reduce this inflammation-induced collateral damage to the lung tissue," Hawiger said. "This would allow both faster clearance of the infecting organisms and faster healing of the lung."

Several years ago, Hawiger and colleagues began searching for new targets for anti-inflammatory therapy. They reasoned that a protein called NF-kappa-B – the "master regulator" of genes that encode mediators of inflammation – might make a good target.

The researchers knew that NF-kappa-B moves from the cell cytoplasm to the nucleus (where it is active) in response to cellular injury or microbial agents, and they decided to try to block this nuclear translocation.

They designed a small protein fragment – a peptide – that mimicked the nuclear transport "signal," hoping that it would compete with, and block, NF-kappa-B's movement to the nucleus. To get the peptide into cells, the team took advantage of the cellular mechanism that proteins use to cross membranes and engineered a membrane-crossing motif onto the therapeutic peptide.

"To our delight, we found that this peptide crossed the cell membrane and stopped NF-kappa-B in its tracks, blocking it from going to the nucleus in response to conditions which cause inflammation," Hawiger said.

It turned out that the inhibitor worked even more broadly than the researchers expected. The peptide blocks a "shuttle" that ferries not only NF-kappa-B to the nucleus, but also a group of additional stress-responsive proteins. The nuclear shuttle protein represents a new intracellular target for anti-inflammatory therapy, Hawiger said.

The researchers tested the effectiveness of this cell-penetrating peptide therapy against inflammation in a mouse model of acute lung injury.

They exposed mice to staphylococcal enterotoxin B (SEB), an immunotoxin produced by methicillin-resistant S. aureus (MRSA). SEB generates a "storm" of inflammatory signals that damages the lungs and causes ARDS and multiple organ dysfunction. Airborne SEB caused fatal ARDS in non-human primates.

Treatment of SEB-exposed mice with the nuclear transport inhibitor suppressed the inflammatory storm in the lungs. Inflammatory cells, whose numbers increase 2.5-fold after SEB exposure, remained normal in peptide-treated mice. Peptide therapy also suppressed the levels of chemokines and cytokines and prevented injury to the lung's blood vessels.

"It's very reassuring to us that this single agent, which targets the nuclear import shuttle, suppressed the production of all of these harmful mediators of excessive inflammation," Hawiger said.

The investigators are pursuing pre-clinical studies of the peptide therapy with hopes that it will lead to improved adjunctive therapies for life-threatening pneumonia caused by multiple germs.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>