Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy protects lungs from runaway inflammation

13.03.2009
A novel anti-inflammatory therapy designed by Vanderbilt University Medical Center investigators prevents acute lung injury in mice exposed to an inflammation-causing toxin, the researchers report in the journal Molecular Therapy.

The new therapy may offer a way to protect the lungs from the "runaway inflammation" that can accompany bacterial or viral pneumonia, said Jacek Hawiger, M.D., Ph.D., the leader of the research team that has pioneered the new approach.

"Lung inflammation is an extremely perplexing problem," noted Hawiger, chair of the Department of Microbiology & Immunology.

The immune system sometimes overreacts to lung infection and produces excessive concentrations of inflammatory signals (cytokines and chemokines), which can damage the fine architecture of the lungs and lead to life-threatening acute respiratory distress syndrome (ARDS). Such damage is most likely when pneumonia has both viral and bacterial causes – for example from combined influenza and Staphylococcus aureus infections.

"We believe that in addition to controlling the infection with antibacterial and antiviral agents, we need therapies that reduce this inflammation-induced collateral damage to the lung tissue," Hawiger said. "This would allow both faster clearance of the infecting organisms and faster healing of the lung."

Several years ago, Hawiger and colleagues began searching for new targets for anti-inflammatory therapy. They reasoned that a protein called NF-kappa-B – the "master regulator" of genes that encode mediators of inflammation – might make a good target.

The researchers knew that NF-kappa-B moves from the cell cytoplasm to the nucleus (where it is active) in response to cellular injury or microbial agents, and they decided to try to block this nuclear translocation.

They designed a small protein fragment – a peptide – that mimicked the nuclear transport "signal," hoping that it would compete with, and block, NF-kappa-B's movement to the nucleus. To get the peptide into cells, the team took advantage of the cellular mechanism that proteins use to cross membranes and engineered a membrane-crossing motif onto the therapeutic peptide.

"To our delight, we found that this peptide crossed the cell membrane and stopped NF-kappa-B in its tracks, blocking it from going to the nucleus in response to conditions which cause inflammation," Hawiger said.

It turned out that the inhibitor worked even more broadly than the researchers expected. The peptide blocks a "shuttle" that ferries not only NF-kappa-B to the nucleus, but also a group of additional stress-responsive proteins. The nuclear shuttle protein represents a new intracellular target for anti-inflammatory therapy, Hawiger said.

The researchers tested the effectiveness of this cell-penetrating peptide therapy against inflammation in a mouse model of acute lung injury.

They exposed mice to staphylococcal enterotoxin B (SEB), an immunotoxin produced by methicillin-resistant S. aureus (MRSA). SEB generates a "storm" of inflammatory signals that damages the lungs and causes ARDS and multiple organ dysfunction. Airborne SEB caused fatal ARDS in non-human primates.

Treatment of SEB-exposed mice with the nuclear transport inhibitor suppressed the inflammatory storm in the lungs. Inflammatory cells, whose numbers increase 2.5-fold after SEB exposure, remained normal in peptide-treated mice. Peptide therapy also suppressed the levels of chemokines and cytokines and prevented injury to the lung's blood vessels.

"It's very reassuring to us that this single agent, which targets the nuclear import shuttle, suppressed the production of all of these harmful mediators of excessive inflammation," Hawiger said.

The investigators are pursuing pre-clinical studies of the peptide therapy with hopes that it will lead to improved adjunctive therapies for life-threatening pneumonia caused by multiple germs.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>