Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy protects lungs from runaway inflammation

13.03.2009
A novel anti-inflammatory therapy designed by Vanderbilt University Medical Center investigators prevents acute lung injury in mice exposed to an inflammation-causing toxin, the researchers report in the journal Molecular Therapy.

The new therapy may offer a way to protect the lungs from the "runaway inflammation" that can accompany bacterial or viral pneumonia, said Jacek Hawiger, M.D., Ph.D., the leader of the research team that has pioneered the new approach.

"Lung inflammation is an extremely perplexing problem," noted Hawiger, chair of the Department of Microbiology & Immunology.

The immune system sometimes overreacts to lung infection and produces excessive concentrations of inflammatory signals (cytokines and chemokines), which can damage the fine architecture of the lungs and lead to life-threatening acute respiratory distress syndrome (ARDS). Such damage is most likely when pneumonia has both viral and bacterial causes – for example from combined influenza and Staphylococcus aureus infections.

"We believe that in addition to controlling the infection with antibacterial and antiviral agents, we need therapies that reduce this inflammation-induced collateral damage to the lung tissue," Hawiger said. "This would allow both faster clearance of the infecting organisms and faster healing of the lung."

Several years ago, Hawiger and colleagues began searching for new targets for anti-inflammatory therapy. They reasoned that a protein called NF-kappa-B – the "master regulator" of genes that encode mediators of inflammation – might make a good target.

The researchers knew that NF-kappa-B moves from the cell cytoplasm to the nucleus (where it is active) in response to cellular injury or microbial agents, and they decided to try to block this nuclear translocation.

They designed a small protein fragment – a peptide – that mimicked the nuclear transport "signal," hoping that it would compete with, and block, NF-kappa-B's movement to the nucleus. To get the peptide into cells, the team took advantage of the cellular mechanism that proteins use to cross membranes and engineered a membrane-crossing motif onto the therapeutic peptide.

"To our delight, we found that this peptide crossed the cell membrane and stopped NF-kappa-B in its tracks, blocking it from going to the nucleus in response to conditions which cause inflammation," Hawiger said.

It turned out that the inhibitor worked even more broadly than the researchers expected. The peptide blocks a "shuttle" that ferries not only NF-kappa-B to the nucleus, but also a group of additional stress-responsive proteins. The nuclear shuttle protein represents a new intracellular target for anti-inflammatory therapy, Hawiger said.

The researchers tested the effectiveness of this cell-penetrating peptide therapy against inflammation in a mouse model of acute lung injury.

They exposed mice to staphylococcal enterotoxin B (SEB), an immunotoxin produced by methicillin-resistant S. aureus (MRSA). SEB generates a "storm" of inflammatory signals that damages the lungs and causes ARDS and multiple organ dysfunction. Airborne SEB caused fatal ARDS in non-human primates.

Treatment of SEB-exposed mice with the nuclear transport inhibitor suppressed the inflammatory storm in the lungs. Inflammatory cells, whose numbers increase 2.5-fold after SEB exposure, remained normal in peptide-treated mice. Peptide therapy also suppressed the levels of chemokines and cytokines and prevented injury to the lung's blood vessels.

"It's very reassuring to us that this single agent, which targets the nuclear import shuttle, suppressed the production of all of these harmful mediators of excessive inflammation," Hawiger said.

The investigators are pursuing pre-clinical studies of the peptide therapy with hopes that it will lead to improved adjunctive therapies for life-threatening pneumonia caused by multiple germs.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>