Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapy protects lungs from runaway inflammation

13.03.2009
A novel anti-inflammatory therapy designed by Vanderbilt University Medical Center investigators prevents acute lung injury in mice exposed to an inflammation-causing toxin, the researchers report in the journal Molecular Therapy.

The new therapy may offer a way to protect the lungs from the "runaway inflammation" that can accompany bacterial or viral pneumonia, said Jacek Hawiger, M.D., Ph.D., the leader of the research team that has pioneered the new approach.

"Lung inflammation is an extremely perplexing problem," noted Hawiger, chair of the Department of Microbiology & Immunology.

The immune system sometimes overreacts to lung infection and produces excessive concentrations of inflammatory signals (cytokines and chemokines), which can damage the fine architecture of the lungs and lead to life-threatening acute respiratory distress syndrome (ARDS). Such damage is most likely when pneumonia has both viral and bacterial causes – for example from combined influenza and Staphylococcus aureus infections.

"We believe that in addition to controlling the infection with antibacterial and antiviral agents, we need therapies that reduce this inflammation-induced collateral damage to the lung tissue," Hawiger said. "This would allow both faster clearance of the infecting organisms and faster healing of the lung."

Several years ago, Hawiger and colleagues began searching for new targets for anti-inflammatory therapy. They reasoned that a protein called NF-kappa-B – the "master regulator" of genes that encode mediators of inflammation – might make a good target.

The researchers knew that NF-kappa-B moves from the cell cytoplasm to the nucleus (where it is active) in response to cellular injury or microbial agents, and they decided to try to block this nuclear translocation.

They designed a small protein fragment – a peptide – that mimicked the nuclear transport "signal," hoping that it would compete with, and block, NF-kappa-B's movement to the nucleus. To get the peptide into cells, the team took advantage of the cellular mechanism that proteins use to cross membranes and engineered a membrane-crossing motif onto the therapeutic peptide.

"To our delight, we found that this peptide crossed the cell membrane and stopped NF-kappa-B in its tracks, blocking it from going to the nucleus in response to conditions which cause inflammation," Hawiger said.

It turned out that the inhibitor worked even more broadly than the researchers expected. The peptide blocks a "shuttle" that ferries not only NF-kappa-B to the nucleus, but also a group of additional stress-responsive proteins. The nuclear shuttle protein represents a new intracellular target for anti-inflammatory therapy, Hawiger said.

The researchers tested the effectiveness of this cell-penetrating peptide therapy against inflammation in a mouse model of acute lung injury.

They exposed mice to staphylococcal enterotoxin B (SEB), an immunotoxin produced by methicillin-resistant S. aureus (MRSA). SEB generates a "storm" of inflammatory signals that damages the lungs and causes ARDS and multiple organ dysfunction. Airborne SEB caused fatal ARDS in non-human primates.

Treatment of SEB-exposed mice with the nuclear transport inhibitor suppressed the inflammatory storm in the lungs. Inflammatory cells, whose numbers increase 2.5-fold after SEB exposure, remained normal in peptide-treated mice. Peptide therapy also suppressed the levels of chemokines and cytokines and prevented injury to the lung's blood vessels.

"It's very reassuring to us that this single agent, which targets the nuclear import shuttle, suppressed the production of all of these harmful mediators of excessive inflammation," Hawiger said.

The investigators are pursuing pre-clinical studies of the peptide therapy with hopes that it will lead to improved adjunctive therapies for life-threatening pneumonia caused by multiple germs.

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>