Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New therapy on the horizon for ALK+ non-small cell lung cancer

A new compound that targets anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer is well-tolerated by patients and is already showing early signs of activity, including in patients who no longer respond to crizotinib—the only approved ALK inhibitor.

Results of this Novartis-sponsored sudy will be presented by a researcher from Fox Chase Cancer Center during the 2012 Annual Meeting of the American Society of Clinical Oncology on Sunday, June 3.

The compound LDK378, developed by Novartis, targets ALK—a key cancer gene in a subset of lung cancer, lymphoma and the childhood cancer neuroblastoma, and may be associated with other cancers, including breast and colorectal cancer. The study's authors looked at patients with ALK+ lung cancer, as well as other ALK+ solid tumors. Early data from the phase I study show that the majority of patients treated with active doses of LDK378 responded, including those who had progressed after treatment with crizotinib.

"These results are encouraging," says study author Ranee Mehra, M.D., assistant professor and medical oncologist at Fox Chase. "They offer hope to patients who have tumors with alterations involving ALK, even if they have relapsed from previous treatments.

In its first test in people, designed to determine the compound's safety and optimal dose, 56 people with various types of ALK+ solid tumors (primarily lung cancer) were enrolled, receiving doses between 50 to 750 milligrams per day (mg/day). LDK378 was well-tolerated in most patients up to 750 mg/d, with the most common side effects being nausea, vomiting, and diarrhea.

"Whenever you do a trial with a drug, even if it's just designed to look for safety and dosage, you are interested in whether patients responded," says Mehra. "These results are definitely encouraging, and mean we can go forward with additional research looking at whether LDK378 is effective in various types of cancers that have alterations involving ALK."

The fact that patients appeared to tolerate LDK378 at doses up to 750 mg/d is also encouraging, she adds, since preclinical research has suggested this dose would have therapeutic effects.

In the meantime, Mehra and investigators at other centers around the world are continuing to enroll patients in the trial. The next phase of the study will test the maximum tolerated dose of LDK378 in all patients enrolled.

This study was sponsored and funded by Novartis.

Mehra's co-authors include: Mehra's co-authors include: [D. Ross Camidge (University of Colorado, Denver, CO), Sunil Sharma (Huntsman Cancer Center, Salt Lake City, UT), Enriqueta Felip (Vall d'Hebron University Hospital, Barcelona, Spain), Daniel Shao-Weng Tan (National Cancer Centre, Singapore, Singapore), Johan F. Vansteenkiste (University Hospital Gasthuisberg, Leuven, Belgium), Tommaso Martino De Pas (European Institute of Oncology, Milan, Italy), Dong-Wan Kim (Seoul National University Hospital, Seoul, South Korea), Armando Santoro (Humanitas Cancer Center, Rozzano, Italy), Geoffrey Liu (Princess Margaret Hospital, Toronto, ON), Meredith Goldwasser (Novartis Institutes for BioMedical Research, Cambridge, MA), David Dai (Novartis Pharmaceuticals, East Hanover, NJ), Marietta Radona (Novartis Pharmaceuticals, East Hanover, NJ), Anthony Boral (Novartis Institutes for BioMedical Research, Cambridge, MA), Alice Tsang Shaw (Massachusetts General Hospital Cancer Center, Boston, MA).

Fox Chase Cancer Center is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at or call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:

Further reports about: ALK ALK+ Cancer LDK378 Nobel Prize Novartis Oncology Pharmaceuticals clinical research lung cancer

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>