Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapy that heats and destroys bone tumors eases patients' pain

03.06.2013
Patients with cancer that has spread to their bones are often treated with radiation therapy to reduce pain.

But if that treatment doesn't work, or can't be used again, a second, effective option now exists. Results of a clinical trial on the new therapy, presented by a researcher at Jefferson's Kimmel Cancer Center, is being presented at the annual meeting of the American Society of Clinical Oncology (ASCO).

Mark Hurwitz, MD, Director of Thermal Oncology for the Department of Radiation Oncology at Thomas Jefferson University and Hospital reported that the treatment, magnetic resonance image-guided focused ultrasound (MRIgFU) ablation therapy, significantly reduced pain in 67 percent of patients who received the treatment. The device, known as ExAblate, uses numerous small ultrasound beams designed to converge on a tumor within bone, heat it and destroy it.

"Pain is a common, often debilitating symptom of the spread of cancer to bones. We are pleased to now have a second therapy that can improve a patient's enjoyment of life," says Dr. Hurwitz, who led the clinical trial. A number of cancers spread to bones, and a substantial proportion of patients live for years with these metastases, which can have a profound impact on a patient's quality of life, he adds.

The findings of the trial led to approval of ExAblate last October by the U.S. Food and Drug Administration as second-line therapy for palliation of painful metastatic bone tumors. The first-line therapy is typically radiotherapy.

"The response to ExAblate was as good as radiotherapy, which was notable because it is very unusual to see a second-line treatment with a response rate that is as high as first-line therapy," Dr. Hurwitz says.

He added that use of ExAblate offers several advantages compared to other ablative therapies. "It is non-invasive and provides more detailed anatomic information so that we can visualize the complete beam path to make sure that critical structures such as vessels and nerves are not in the way," Dr. Hurwitz says. "We are also able to monitor the temperature in the tumor as well as in nearby normal tissues so that we do not inadvertently heat normal organs and tissues."

ExAblate has also been approved for treatment of uterine fibroids.

The study led by Dr. Hurwitz is a multicenter, randomized and placebo-controlled phase three clinical trial. The 142 patients enrolled could either not undergo, or had not responded to, radiation treatment.

Three months after ExAblate therapy, 67 percent of treated patients reported significant improvement in pain, compared to 21 percent in the placebo arm. They typically rated their pain as "much improved" or "very much improved," Dr. Hurwitz says. A quality of life assessment also measured significant improvement.

"The treatment is given just once, and a response occurs within days," he says. "There are a lot of patients who could potentially benefit from MR guided focused ultrasound."

The clinical trial was sponsored by Insightec Ltd., who developed ExAblate.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Danielle Servetnick | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>