Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapy that heats and destroys bone tumors eases patients' pain

03.06.2013
Patients with cancer that has spread to their bones are often treated with radiation therapy to reduce pain.

But if that treatment doesn't work, or can't be used again, a second, effective option now exists. Results of a clinical trial on the new therapy, presented by a researcher at Jefferson's Kimmel Cancer Center, is being presented at the annual meeting of the American Society of Clinical Oncology (ASCO).

Mark Hurwitz, MD, Director of Thermal Oncology for the Department of Radiation Oncology at Thomas Jefferson University and Hospital reported that the treatment, magnetic resonance image-guided focused ultrasound (MRIgFU) ablation therapy, significantly reduced pain in 67 percent of patients who received the treatment. The device, known as ExAblate, uses numerous small ultrasound beams designed to converge on a tumor within bone, heat it and destroy it.

"Pain is a common, often debilitating symptom of the spread of cancer to bones. We are pleased to now have a second therapy that can improve a patient's enjoyment of life," says Dr. Hurwitz, who led the clinical trial. A number of cancers spread to bones, and a substantial proportion of patients live for years with these metastases, which can have a profound impact on a patient's quality of life, he adds.

The findings of the trial led to approval of ExAblate last October by the U.S. Food and Drug Administration as second-line therapy for palliation of painful metastatic bone tumors. The first-line therapy is typically radiotherapy.

"The response to ExAblate was as good as radiotherapy, which was notable because it is very unusual to see a second-line treatment with a response rate that is as high as first-line therapy," Dr. Hurwitz says.

He added that use of ExAblate offers several advantages compared to other ablative therapies. "It is non-invasive and provides more detailed anatomic information so that we can visualize the complete beam path to make sure that critical structures such as vessels and nerves are not in the way," Dr. Hurwitz says. "We are also able to monitor the temperature in the tumor as well as in nearby normal tissues so that we do not inadvertently heat normal organs and tissues."

ExAblate has also been approved for treatment of uterine fibroids.

The study led by Dr. Hurwitz is a multicenter, randomized and placebo-controlled phase three clinical trial. The 142 patients enrolled could either not undergo, or had not responded to, radiation treatment.

Three months after ExAblate therapy, 67 percent of treated patients reported significant improvement in pain, compared to 21 percent in the placebo arm. They typically rated their pain as "much improved" or "very much improved," Dr. Hurwitz says. A quality of life assessment also measured significant improvement.

"The treatment is given just once, and a response occurs within days," he says. "There are a lot of patients who could potentially benefit from MR guided focused ultrasound."

The clinical trial was sponsored by Insightec Ltd., who developed ExAblate.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Danielle Servetnick | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>