Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic strategy targets dengue virus using artificial microRNAs

12.07.2013
Mosquito-borne dengue viruses cause an estimated 50 million cases of human dengue fever a year and are a significant public health threat worldwide.

A novel therapeutic approach prevents dengue virus from reproducing in humans by targeting and silencing key regions of the dengue genome essential for viral replication.

This innovative treatment strategy and the successful results of initial testing are presented in Nucleic Acid Therapeutics, a peer-reviewed journal from Mary Ann Liebert, Inc. publishers. The article is available on the Nucleic Acid Therapeutics website.

Pei-wen Xie, Yu Xie, Xiu-juan Zhang, Hai Huang, Li-na He, Xue-jun Wang, and Sheng-qi Wang, Beijing Institute of Radiation Medicine and Second Artillery General Hospital, Beijing, and Central South University, Changsha, China, identified multiple regions in the dengue virus genome that have maintained the same nucleic sequence over long periods of evolution. These highly conserved regions are ideal targets for antiviral drug development as they are unlikely to mutate and allow the virus to develop drug resistance.

In the article "Inhibition of Dengue Virus 2 Replication by Artificial MicroRNAs Targeting the Conserved Regions," the authors describe how they constructed artificial short strands of nucleic acids called microRNAs that specifically target these conserved sites in the dengue virus genome. Their experiments led to the identification of the most effective combinations of microRNAs capable of inhibiting the virus from replication in humans.

"The dengue virus is endemic in over 100 countries and spreading rapidly," says Executive Editor Fintan Steele, PhD, SomaLogic, Inc., Boulder, CO. "In the absence of effective preventive measures, new treatments like those being pursued by Xie et al. are desperately needed."

Nucleic Acid Therapeutics is under the editorial leadership of Co-Editors-in-Chief Bruce A. Sullenger, PhD, Duke Translational Research Institute, Duke University Medical Center, Durham, NC, and C.A. Stein, MD, PhD, City of Hope National Medical Center, Duarte, CA; and Executive Editor Fintan Steele, PhD (SomaLogic, Boulder, CO).

About the Journal

Nucleic Acid Therapeutics is an authoritative, peer-reviewed journal published bimonthly in print and online that focuses on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. Nucleic Acid Therapeutics is the Official Journal of the Oligonucleotide Therapeutics Society. Complete tables of content and a free sample issue may be viewed on the Nucleic Acid Therapeutics website.

About the Society

The Oligonucleotide Therapeutics Society is an open, nonprofit forum to foster academia and industry-based research and development of oligonucleotide therapeutics. The society brings together the expertise from different angles of oligonucleotide research to create synergies and to bring the field of oligonucleotides to its full therapeutic potential.

About the Publisher

Mary Ann Liebert, Inc. publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy and Human Gene Therapy Methods, Genetic Testing and Molecular Biomarkers, ASSAY and Drug Development Technologies, and DNA and Cell Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc. publishers website.

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101
http://www.liebertpub.com

Vicki Cohn | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>