Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic approaches to cure chronic HBV infection

25.04.2013
Exciting new data presented today at the International Liver Congress™ 2013 include results from early in vitro and in vivo studies targeting covalently closed circular DNA (cccDNA), which may form the basis of a cure for chronic hepatitis B virus (HBV) infection.

HBV cccDNA is organized into mini-chromosomes within the nucleus of infected cells by histone and non-histone proteins. Despite the availability of efficient therapies against HBV, long-term persistence of cccDNA necessitates life-long treatments to suppress the virus. The following three experimental studies demonstrate effective HBV-cccDNA targeting/depletion using novel therapeutic approaches which offer the potential of a cure.

Liver regeneration induces strong reduction of viral replication and cccDNA levels, but not complete cccDNA eradication; without antiviral treatment, de novo HBV infection can be re-established.

Key findings of research in HBV-infected human hepatocytes using the uPA/SCID chimeric mouse system show that liver regeneration induces strong reduction of viral replication and cccDNA levels, with rapid formation of cccDNA-free hepatocytes. However, because complete cccDNA eradication is not achieved, in the absence of antiviral treatment, de novo HBV infection could be re-established in quiescent (non-dividing) human hepatocytes. This suggests that induction of hepatocyte turn-over together with antiviral drugs inducing viral suppression, such as nucleoside analogues and IFN, or blocking cell entry, may accelerate the clearance of the viral minichromosome.

Targeting epigenetic control of nuclear cccDNA minichromosome to suppress HBV transcription and replication may form basis for other therapeutic approaches to curing chronic HBV infection.

In the infected liver cell the rate of replication of HBV is regulated by the acetylation or methylation of histone proteins which surround the cccDNA minichromosome – so called epigenetic regulation. In a separate innovative study, the suppression of HBV transcription and replication by small molecules that target the epigenetic control of nuclear cccDNA minichromosome was investigated. The different classes of small molecules studied included: Class I, II and III histone deacetylase inhibitors (HDACi); p300 and PCAF histone acetyltransferases (HAT) inhibitors; hSirt1 activators; JMJD3 histone demethylase inhibitors.

The combined inhibition of p300 and PCAF HATs resulted in an evident reduction of HBV replication which mirrored the decrease of pgRNA transcription. The hSirt1/2 activator MC2791 and the JMJD3 inhibitor MC3119, albeit with different efficiency, inhibited both HBV replication and cccDNA transcription. Results represent a proof of concept that activation of hSirt1 and Ezh2 (through the inhibition of its functional antagonist JMJD3) by small molecules can induce an active epigenetic suppression of HBV cccDNA minichromosome similar to that observed with IFNá, and lead to persistent cccDNA silencing.

Lymphtoxin beta receptor (LTbR) agonisation represents basis for novel alternative therapeutic approach to curing chronic HBV infection.

The final study demonstrated that stimulating the lymphtoxin beta receptor (LTbR) provides an effective, long lasting and non-cytopathic mechanism for achieving effective HBV-cccDNA depletion in infected hepatocytes. Cell culture models including HBV-infected HepaRG cells and primary human hepatocytes were used to test the effect of antibodies stimulating human LTbR (BS1 or CBE11). Results show that a strong and dose-dependent anti-HBV effect was achieved by activation of the LTbR. All HBV replication markers were decreased with this treatment, including cccDNA in cells where HBV infection was already established.

Hepatitis B is the most prevalent cause of chronic viral hepatitis and a major global health problem. Prof. Fabien Zoulim, EASL Educational Councillor commented on the exciting new data: "In chronic hepatitis B infection, the viral genome forms a stable minichromosome - the covalently closed circular DNA (cccDNA) - which can persist throughout the lifespan of the hepatocyte."

"Current treatments focus on suppression of HBV and discovery of compounds directly targeting cccDNA has been one of the major challenges to curing HBV infection; but these preliminary data show novel therapeutic approaches can be applied to successfully target cccDNA with the long-term aspiration of finding a cure" added Prof. Fabien Zoulim.

Disclaimer: the data referenced in this release is based on the submitted abstract. More recent data may be presented at the International Liver Congress™ 2013.

About EASL

EASL is the leading European scientific society involved in promoting research and education in hepatology. EASL attracts the foremost hepatology experts and has an impressive track record in promoting research in liver disease, supporting wider education and promoting changes in European liver policy.

EASL's main focus on education and research is delivered through numerous events and initiatives, including:

The International Liver CongressTM which is the main scientific and professional event in hepatology worldwide

Meetings including Monothematic and Special conferences, Post Graduate courses and other endorsed meetings that take place throughout the year

Clinical and Basic Schools of Hepatology, a series of events covering different aspects in the field of hepatology

Journal of Hepatology published monthly
Participation in a number of policy initiatives at European level
About The International Liver CongressTM 2013
The International Liver Congress™ 2013, the 48th annual meeting of the European Association for the study of the Liver, is being held at the RAI Convention Centre in Amsterdam from April 24 – 28, 2013. The congress annually attracts in excess of 9000 clinicians and scientists from around the world and provides an opportunity to hear the latest research, perspectives and treatments of liver disease from principal experts in the field.

References:

1 Allweiss L et al, PROLIFERATION OF HEPATITIS B VIRUS INFECTED HUMAN HEPATOCYTES INDUCES SUPPRESSION OF VIRAL REPLICATION AND RAPID CCCDNA DECREASE IN HUMANIZED MICE. Presented at the International Liver Congress™ 2013

2 Palumbo GA et al, SUPPRESSION OF HEPATITIS B VIRUS (HBV) TRANSCRIPTION AND REPLICATION BY SMALL

3 MOLECULES THAT TARGET THE EPIGENETIC CONTROL OF NUCLEAR CCCDNA MINICHROMOSOME. Presented at the International Liver Congress™ 2013 4 Lucifora J et al, LYMPHOTOXIN BETA RECEPTOR ACTIVATION LEADS TO DEGRADATION OF HBV CCCDNA FROM INFECTED HEPATOCYTES. Presented at the International Liver Congress™ 2013

Dimple Natali | EurekAlert!
Further information:
http://www.easl.eu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>