Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic approaches to cure chronic HBV infection

25.04.2013
Exciting new data presented today at the International Liver Congress™ 2013 include results from early in vitro and in vivo studies targeting covalently closed circular DNA (cccDNA), which may form the basis of a cure for chronic hepatitis B virus (HBV) infection.

HBV cccDNA is organized into mini-chromosomes within the nucleus of infected cells by histone and non-histone proteins. Despite the availability of efficient therapies against HBV, long-term persistence of cccDNA necessitates life-long treatments to suppress the virus. The following three experimental studies demonstrate effective HBV-cccDNA targeting/depletion using novel therapeutic approaches which offer the potential of a cure.

Liver regeneration induces strong reduction of viral replication and cccDNA levels, but not complete cccDNA eradication; without antiviral treatment, de novo HBV infection can be re-established.

Key findings of research in HBV-infected human hepatocytes using the uPA/SCID chimeric mouse system show that liver regeneration induces strong reduction of viral replication and cccDNA levels, with rapid formation of cccDNA-free hepatocytes. However, because complete cccDNA eradication is not achieved, in the absence of antiviral treatment, de novo HBV infection could be re-established in quiescent (non-dividing) human hepatocytes. This suggests that induction of hepatocyte turn-over together with antiviral drugs inducing viral suppression, such as nucleoside analogues and IFN, or blocking cell entry, may accelerate the clearance of the viral minichromosome.

Targeting epigenetic control of nuclear cccDNA minichromosome to suppress HBV transcription and replication may form basis for other therapeutic approaches to curing chronic HBV infection.

In the infected liver cell the rate of replication of HBV is regulated by the acetylation or methylation of histone proteins which surround the cccDNA minichromosome – so called epigenetic regulation. In a separate innovative study, the suppression of HBV transcription and replication by small molecules that target the epigenetic control of nuclear cccDNA minichromosome was investigated. The different classes of small molecules studied included: Class I, II and III histone deacetylase inhibitors (HDACi); p300 and PCAF histone acetyltransferases (HAT) inhibitors; hSirt1 activators; JMJD3 histone demethylase inhibitors.

The combined inhibition of p300 and PCAF HATs resulted in an evident reduction of HBV replication which mirrored the decrease of pgRNA transcription. The hSirt1/2 activator MC2791 and the JMJD3 inhibitor MC3119, albeit with different efficiency, inhibited both HBV replication and cccDNA transcription. Results represent a proof of concept that activation of hSirt1 and Ezh2 (through the inhibition of its functional antagonist JMJD3) by small molecules can induce an active epigenetic suppression of HBV cccDNA minichromosome similar to that observed with IFNá, and lead to persistent cccDNA silencing.

Lymphtoxin beta receptor (LTbR) agonisation represents basis for novel alternative therapeutic approach to curing chronic HBV infection.

The final study demonstrated that stimulating the lymphtoxin beta receptor (LTbR) provides an effective, long lasting and non-cytopathic mechanism for achieving effective HBV-cccDNA depletion in infected hepatocytes. Cell culture models including HBV-infected HepaRG cells and primary human hepatocytes were used to test the effect of antibodies stimulating human LTbR (BS1 or CBE11). Results show that a strong and dose-dependent anti-HBV effect was achieved by activation of the LTbR. All HBV replication markers were decreased with this treatment, including cccDNA in cells where HBV infection was already established.

Hepatitis B is the most prevalent cause of chronic viral hepatitis and a major global health problem. Prof. Fabien Zoulim, EASL Educational Councillor commented on the exciting new data: "In chronic hepatitis B infection, the viral genome forms a stable minichromosome - the covalently closed circular DNA (cccDNA) - which can persist throughout the lifespan of the hepatocyte."

"Current treatments focus on suppression of HBV and discovery of compounds directly targeting cccDNA has been one of the major challenges to curing HBV infection; but these preliminary data show novel therapeutic approaches can be applied to successfully target cccDNA with the long-term aspiration of finding a cure" added Prof. Fabien Zoulim.

Disclaimer: the data referenced in this release is based on the submitted abstract. More recent data may be presented at the International Liver Congress™ 2013.

About EASL

EASL is the leading European scientific society involved in promoting research and education in hepatology. EASL attracts the foremost hepatology experts and has an impressive track record in promoting research in liver disease, supporting wider education and promoting changes in European liver policy.

EASL's main focus on education and research is delivered through numerous events and initiatives, including:

The International Liver CongressTM which is the main scientific and professional event in hepatology worldwide

Meetings including Monothematic and Special conferences, Post Graduate courses and other endorsed meetings that take place throughout the year

Clinical and Basic Schools of Hepatology, a series of events covering different aspects in the field of hepatology

Journal of Hepatology published monthly
Participation in a number of policy initiatives at European level
About The International Liver CongressTM 2013
The International Liver Congress™ 2013, the 48th annual meeting of the European Association for the study of the Liver, is being held at the RAI Convention Centre in Amsterdam from April 24 – 28, 2013. The congress annually attracts in excess of 9000 clinicians and scientists from around the world and provides an opportunity to hear the latest research, perspectives and treatments of liver disease from principal experts in the field.

References:

1 Allweiss L et al, PROLIFERATION OF HEPATITIS B VIRUS INFECTED HUMAN HEPATOCYTES INDUCES SUPPRESSION OF VIRAL REPLICATION AND RAPID CCCDNA DECREASE IN HUMANIZED MICE. Presented at the International Liver Congress™ 2013

2 Palumbo GA et al, SUPPRESSION OF HEPATITIS B VIRUS (HBV) TRANSCRIPTION AND REPLICATION BY SMALL

3 MOLECULES THAT TARGET THE EPIGENETIC CONTROL OF NUCLEAR CCCDNA MINICHROMOSOME. Presented at the International Liver Congress™ 2013 4 Lucifora J et al, LYMPHOTOXIN BETA RECEPTOR ACTIVATION LEADS TO DEGRADATION OF HBV CCCDNA FROM INFECTED HEPATOCYTES. Presented at the International Liver Congress™ 2013

Dimple Natali | EurekAlert!
Further information:
http://www.easl.eu/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>