Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic approach shows promise against multiple bacterial pathogens

01.06.2010
Finding may offer future alternative to antibiotics

A team of scientists from government, academia and private industry has developed a novel treatment that protects mice from infection with the bacterium that causes tularemia, a highly infectious disease of rodents, sometimes transmitted to people, and also known as rabbit fever.

In additional experiments with human immune cells, the treatment also demonstrated protection against three other types of disease-causing bacteria that, like the tularemia bacteria, occur naturally, can be highly virulent, and are considered possible agents of bioterrorism.

The experimental therapeutic works by stimulating the host immune system to destroy invading microbes. In contrast, antibiotics work by directly attacking invading bacteria, which often develop resistance to these medications. The therapeutic has the potential to enhance the action of antibiotics and provide an alternative to them.

"A therapeutic that protects against a wide array of bacterial pathogens would have enormous medical and public health implications for naturally occurring infections and potential agents of bioterrorism," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health. "This creative approach is a prime example of public-private partnerships that can facilitate progress from a basic research finding to new, desperately needed novel therapeutics."

Catharine Bosio, Ph.D., and her colleagues at NIAID's Rocky Mountain Laboratories in Hamilton, Mont., led the study. Study collaborators are from Colorado State University in Fort Collins and Juvaris Biotherapeutics of Burlingame, Calif. The study is available online in the open-access journal PLoS Pathogens.

In the study, the researchers combined components isolated from the membrane of a weakened strain of Francisella tularensis, the agent of tularemia, with the Juvaris product CLDC (cationic liposome DNA complexes). The combination stimulated a natural antibacterial mechanism, called reactive oxygen species (ROS) and reactive nitrogen species (RNS), in immune cells that ingest bacteria. ROS and RNS attack and kill invading bacteria, preventing replication and spread of the pathogens to other cells.

Sixty percent of mice in the study survived lethal pulmonary infection with virulent F. tularensis when treated with the therapeutic intravenously three days before the bacterial challenge. No mice survived when given the bacterial components or the CLDC alone, demonstrating the importance of combining both to maximize protection in mouse and human cells. The treatment also showed broad usage, protecting human immune cells from bacteria that cause plague, melioidosis and brucellosis as well as tularemia. Melioidosis is primarily a tropical disease spread to humans and animals through contaminated soil and water. Brucellosis is a disease that primarily affects animals, including humans who come in contact with infected animals or animal products, such as contaminated milk.

According to Dr. Bosio, the three-day advance treatment appears crucial to providing enough time to stimulate the immune system. Any treatment less than three days in advance failed to protect the mice, she said.

"We are continuing to improve the versatility of this treatment as an antibacterial therapeutic with respect to timing of delivery and efficacy," she says. "Meanwhile, CLDC plus membrane protein fractions is proving to be an excellent tool to determine how to safely and successfully stimulate the body's own antibacterial army to protect itself against highly infectious invaders."

The research team will continue to study the precise role that membrane protein fractions play in combination with CLDC, and how the combination affects the production of RNS and ROS in cells from mice and from humans.

For more information, visit NIAID' Tularemia Web page at http://www.niaid.nih.gov/topics/tularemia/Pages/research.aspx.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: R Ireland et al. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Pathogens 6(5): e1000921. DOI:10.1371/journal.ppat.1000921 (2010).

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>