Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory in neuroscience by UNIST Research Team: common mechanisms in Fragile X and Down syndrome

04.10.2013
A new common mechanism in Fragile X and Down syndrome has been identified by scientists at Ulsan National Institute of Science and Technology (UNIST), Korea and published in the world leading science journal, Trends in Neurosciences (Cell Press).

A new common mechanism in Fragile X and Down syndrome has been identified by scientists at Ulsan National Institute of Science and Technology (UNIST), Korea and published in the world leading science journal, Trends in Neurosciences (Cell Press). (Title : Meeting at the crossroads: Common mechanisms in Fragile X and Down syndrome, http://dx.doi.org/10.1016/j.tins.2013.08.007)

Emerging evidence shows that the regulation of local protein synthesis in dendritic spines plays a crucial role in controlling synaptic morphogenesis and synaptic efficacy. However, scientist do not yet understand how local protein synthesis regulates dendritic spine morphology, a process that is important for learning and memory.

The research team led by Prof. Kyung-Tai Min from UNIST presented evidence that pathways controlled by DSCR1 and FMRP, genes implicated in two of the most common genetic causes of intellectual disabilities – DS and FXS converge to regulate spine morphogenesis, local protein synthesis, and neurotransmission.

Min’s research team highlighted the *previous research work published in The EMBO Journal by Prof. Min, showing that some of the proteins altered in Fragile X and Down syndrome are common molecular triggers of intellectual disability in both disorders, DS and FXS.

*Title: DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis (The EMBO Journal (2012) 31, 3655 – 3666 )

They reviewed other genes encoded by chromosome 21 that may regulate dendritic spine morphogenesis and contribute to intellectual disabilities by acting through pathways involving FMRP and DSCR1.

The research work provided an important stepping stone in understanding the multiple roles of DSCR1 in neurons and in identifying a molecule that is closely linked to intellectual disability for both syndromes.

“We will continuously investigate whether reducing FMRP in DS mouse model or elevating DSCR1 in FMRP knockout mice could restore synaptic plasticity, dendritic spine morphogenesis, and local protein synthesis will further advance our understanding of both diseases,” said Prof. Min, presenting future research plan.

“Further elucidation of the large functional protein-inter-action network that regulates local protein synthesis, spine morphogenesis, and synaptic transmission may also shed light on overlapping molecular pathways that cause intellectual disabilities in different disorders,” added Prof. Min.

This research work was supported by grants from Ulsan National Institute of Science and Technology, the Korea Ministry of Education, Science and Technology and Foundation Jerome Lejeune.

Ulsan National Institute of Science and Technology (UNIST) http://www.unist.ac.kr
Homepage of Prof. Kyung-Tai Min http://minlab.unist.ac.kr/
The original press release can be found at
https://www.unist.ac.kr/board/view.sko?boardId=Notice&boardSid=5037&menuCd=AB07002001000&contentsSid=8297&orderBy=register_dt&startPage=1&searchType=&keyword=&searchStartDt=&searchEndDt=&dataSid=2377338

Associated links
http://www.unist.ac.kr
http://minlab.unist.ac.kr
Journal information
Trends in Neurosciences (Cell Press)
Funding information
UNIST, the Korea Ministry of Education, Science and Technology and Foundation Jerome Lejeune

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>