Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Surface Area of the Digestive Tract "only" as Large as a Studio Apartment

23.04.2014

The internal surface area of the gastro-intestinal tract has long been considered to be between 180 and 300 square meters. Scientists at the Sahlgrenska Academy have used refined microscopic techniques that indicate a much smaller area.

“Actually, the inner surface of the gastro-intestinal tract is only as large as a normal studio apartment,” says scientist Lars Fändriks.

The digestive tract, which passes from the mouth through the esophagus and onwards through the intestines, has a length of about 5 meters in a normal adult, and is built up with many folds and protrusions.

Previous calculations, which are reproduced in reference works and textbooks, state that the area of the inner surface of the digestive tract is between 180 and 300 square meters – as large as, or even larger than, a tennis court.

Wrong figures
A new study from the Sahlgrenska Academy, published in the Scandinavian Journal of Gastroentorology, shows that these figures are wrong.

Scientists Lars Fändriks and Herbert Helander have used quantitative microscopic techniques to determine that the surface area of the gastro-intestinal tract in healthy adults is “only” between 30 and 40 square meters.

By far the greatest part of this is the small intestine. The area of the large intestine is approximately 2 square meters, while the mouth, esophagus and stomach amount to less than 1 square meter.

Half of a badminton court
Lars Fändriks finds it surprising that the area of the gastro-intestinal tract is not that of a tennis court, rather half of a badminton court.

“It may appear to be simply a curious fact, but the dimensions of the inner surface of the gastro-intestinal tract are important for the uptake of nutrients and drugs, and the new information will help us understand how the mucous membrane protects the body from harmful factors in the intestinal contents,” he says.

Misleading measurements
The Gothenburg scientists explain how the previously erroneous results were arrived at:

“The gastro-intestinal tract is a dynamic system that is difficult to access in the abdominal cavity, and this makes it difficult to measure. Since the past measurements were carried out either during post mortems or during abdominal surgery, when the tissue is relaxed, it is easy to obtain misleading measurements,” says Herbert Helander.

Radiological investigations
The two scientists from Gothenburg have used data from radiological investigations, supplemented with studies of the microscopical structure of the gastro-intestinal tract, where they have used endoscopes to obtain samples of the mucous membrane of the intestines.

The scientists emphasize that the new dimensions are valid for a healthy “average” adult: the length and surface area of the digestive tract differs from person to person. In addition, the measurement for an individual is probably affected by diet and lifestyle.

“From an anatomical point of view, 30-40 square meters is more than enough for the uptake of nutrients. Furthermore, the smaller area is actually quite logical, since it means that the risk of effects from the intestinal contents is lower,” says Herbert Helander.

The article Surface area of the digestive tract – revisited was published in the Scandinavian Journal of Gastroenterology on 2 April.

Link to the article: http://informahealthcare.com/doi/abs/10.3109/00365521.2014.898326

FACTS ABOUT THE DIGESTIVE TRACT
The principle function of the digestive tract is the digestion of food and the absorption of nutrients. The tract is also an important “detection point” for the body’s immune system. Both of these functions require a large surface area. On the other hand, the intestinal contents contain toxins that have accompanied the food, as well as bacteria, which may cause disease. The mucous membrane of the intestines then functions as a barrier to these harmful factors – and in this case it is an advantage to have a small surface area.

Contact:
Herbert Helander, Professor emeritus at the Sahlgrenska Academy, University of Gothenburg
Tel.: +46 300 74421
Mobile: +46 705 505139
herberthelander@hotmail.com

Lars Fändriks, Professor at the Sahlgrenska Academy, University of Gothenburg
Tel.: +46 31 342 4123
Mobile: +46 70 592 2603
lars.fandriks@gastro.gu.se

Weitere Informationen:

http://sahlgrenska.gu.se/english/news_and_events/news/News_Detail//the-surface-a...

Krister Svahn | idw - Informationsdienst Wissenschaft

Further reports about: Academy Digestive Gastroenterology Studio gastro-intestinal tract measurements mouth

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>