Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Surface Area of the Digestive Tract "only" as Large as a Studio Apartment

23.04.2014

The internal surface area of the gastro-intestinal tract has long been considered to be between 180 and 300 square meters. Scientists at the Sahlgrenska Academy have used refined microscopic techniques that indicate a much smaller area.

“Actually, the inner surface of the gastro-intestinal tract is only as large as a normal studio apartment,” says scientist Lars Fändriks.

The digestive tract, which passes from the mouth through the esophagus and onwards through the intestines, has a length of about 5 meters in a normal adult, and is built up with many folds and protrusions.

Previous calculations, which are reproduced in reference works and textbooks, state that the area of the inner surface of the digestive tract is between 180 and 300 square meters – as large as, or even larger than, a tennis court.

Wrong figures
A new study from the Sahlgrenska Academy, published in the Scandinavian Journal of Gastroentorology, shows that these figures are wrong.

Scientists Lars Fändriks and Herbert Helander have used quantitative microscopic techniques to determine that the surface area of the gastro-intestinal tract in healthy adults is “only” between 30 and 40 square meters.

By far the greatest part of this is the small intestine. The area of the large intestine is approximately 2 square meters, while the mouth, esophagus and stomach amount to less than 1 square meter.

Half of a badminton court
Lars Fändriks finds it surprising that the area of the gastro-intestinal tract is not that of a tennis court, rather half of a badminton court.

“It may appear to be simply a curious fact, but the dimensions of the inner surface of the gastro-intestinal tract are important for the uptake of nutrients and drugs, and the new information will help us understand how the mucous membrane protects the body from harmful factors in the intestinal contents,” he says.

Misleading measurements
The Gothenburg scientists explain how the previously erroneous results were arrived at:

“The gastro-intestinal tract is a dynamic system that is difficult to access in the abdominal cavity, and this makes it difficult to measure. Since the past measurements were carried out either during post mortems or during abdominal surgery, when the tissue is relaxed, it is easy to obtain misleading measurements,” says Herbert Helander.

Radiological investigations
The two scientists from Gothenburg have used data from radiological investigations, supplemented with studies of the microscopical structure of the gastro-intestinal tract, where they have used endoscopes to obtain samples of the mucous membrane of the intestines.

The scientists emphasize that the new dimensions are valid for a healthy “average” adult: the length and surface area of the digestive tract differs from person to person. In addition, the measurement for an individual is probably affected by diet and lifestyle.

“From an anatomical point of view, 30-40 square meters is more than enough for the uptake of nutrients. Furthermore, the smaller area is actually quite logical, since it means that the risk of effects from the intestinal contents is lower,” says Herbert Helander.

The article Surface area of the digestive tract – revisited was published in the Scandinavian Journal of Gastroenterology on 2 April.

Link to the article: http://informahealthcare.com/doi/abs/10.3109/00365521.2014.898326

FACTS ABOUT THE DIGESTIVE TRACT
The principle function of the digestive tract is the digestion of food and the absorption of nutrients. The tract is also an important “detection point” for the body’s immune system. Both of these functions require a large surface area. On the other hand, the intestinal contents contain toxins that have accompanied the food, as well as bacteria, which may cause disease. The mucous membrane of the intestines then functions as a barrier to these harmful factors – and in this case it is an advantage to have a small surface area.

Contact:
Herbert Helander, Professor emeritus at the Sahlgrenska Academy, University of Gothenburg
Tel.: +46 300 74421
Mobile: +46 705 505139
herberthelander@hotmail.com

Lars Fändriks, Professor at the Sahlgrenska Academy, University of Gothenburg
Tel.: +46 31 342 4123
Mobile: +46 70 592 2603
lars.fandriks@gastro.gu.se

Weitere Informationen:

http://sahlgrenska.gu.se/english/news_and_events/news/News_Detail//the-surface-a...

Krister Svahn | idw - Informationsdienst Wissenschaft

Further reports about: Academy Digestive Gastroenterology Studio gastro-intestinal tract measurements mouth

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>