Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests in mice identify compound that may keep survivors of brain aneurysms from succumbing to stroke

02.10.2013
Johns Hopkins researchers, working with mice, say they have identified a chemical compound that reduces the risk of dangerous, potentially stroke-causing blood vessel spasms that often occur after the rupture of a bulging vessel in the brain.

They say their findings offer clues about the biological mechanisms that cause vasospasm, or constriction of blood vessels that reduces oxygen flow to the brain, as well as potential means of treating the serious condition in humans.

When an aneurysm — essentially a blister-like bulge in the wall of a blood vessel — bursts, blood spills into the fluid-filled space that cushions the brain inside the skull. If a patient survives a ruptured aneurysm, between 20 and 40 percent of the time, this brain bleed, called a subarachnoid hemorrhage, will lead to an ischemic stroke within four to 21 days, even when the aneurysm is surgically clipped.

"We're a long way from applying this to humans, but it's a good start," says Johns Hopkins neurosurgery resident Tomas Garzon-Muvdi, M.D., M.Sc., one of the authors of the study led by Rafael J. Tamargo, M.D., and described in the October issue of the journal Neurosurgery.

To conduct their experiments, Garzon-Muvdi and his colleagues took blood from mouse leg arteries and injected it behind their necks to mimic what happens in a subarachnoid hemorrhage. Then they gave the mice a compound called (S)-4-carboxyphenylglycine (S-4-CPG), a placebo or nothing at all. The mice given S-4-CPG developed less vasospasm, looked better and were more active than those in the other two groups.

The scientists also found concentrations of the drug in the brains of the mice, showing that it was able to cross the often impermeable blood-brain barrier. The researchers chose the compound because it is similar to drugs that have been used in stroke research in rodents. It is not approved for any use in humans.

Garzon-Muvdi explains that when blood vessels break anywhere but the brain, the body's immune cells easily clear the blood cells and their remnants from the area. This is what happens with a bruise, when immune cells rush to the area, and a chemical cascade scavenges and disperses the remnants of excess blood components.

When a blood vessel bursts in the space around the brain, however, the blood is trapped. A subsequent inflammatory response brings key immune system cells into the space, where they secrete the neurotransmitter glutamate outside of the blood vessels where it shouldn't be, promoting dangerous vasospasm in those blood vessels. This can lead to ischemic stroke, the most common type of stroke, caused by a blockage of a blood vessel in the brain. Death or serious disability may result.

The Johns Hopkins researchers say S-4-CPG keeps glutamate "in check," prevents or reduces vasospasm and allows oxygen-filled blood to continue flowing into the brain.

According to the National Institutes of Health, subarachnoid hemorrhage caused by a cerebral aneurysm that breaks open occurs in about 40 to 50 out of 100,000 people over age 30. Patients may die immediately, but those who survive are still at elevated risk for developing an ischemic stroke in the days afterward. These patients are often watched very carefully in the intensive care unit for one to two weeks to search for early signs of vasospasm so that doctors can take steps to prevent or limit damage from a stroke.

In the ICU, doctors can order regular angiograms or ultrasounds to measure blood flow in vessels. If need be, they can increase blood pressure to send blood through vessels faster in the hopes of counteracting the constriction.

A drug to prevent stroke after a serious subarachnoid hemorrhage that follows the rupture of an aneurysm would improve quality of life for patients, Garzon-Muvdi says, and could potentially save millions of dollars in health care costs if patients don't have to endure extensive hospital stays to monitor for a delayed stroke.

Other Johns Hopkins researchers involved in this study include Gustavo Pradilla, M.D.; Jacob J. Ruzevick, B.S.; Matthew Bender, B.S.; Lindsay Edwards; Rachel Grossman, M.D.; Ming Zhao, Ph.D.; Michelle A. Rudek, Ph.D., Pharm.D.; and Gregory Riggins, M.D., Ph.D.

The research was supported by the Pharmacology Analytical Core of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins though a National Cancer Institute grant (P30 CA00673) and the Shared Instrumentation Grant from the National Center for Research Resources (1S10RR026824-01). The project was also made possible by another NCRR grant (UL1 RR 025005).

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.5 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of the Johns Hopkins Hospital and Health System. JHM's mission is to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation from 1990 to 2011 by U.S. News & World Report.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>