Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Test Can Precisely Pinpoint Food Pathogens

With salmonella-tainted ground turkey sickening more than 100 people and listeria-contaminated cantaloupes killing 15 this year, the ability to detect outbreaks of food-borne illness and determine their sources has become a top public health priority.

A new approach, reported online Oct. 14 in the journal Applied and Environmental Microbiology by a collaborative team led by Cornell University scientists, will enable government agencies and food companies to pinpoint the exact nature and origin of food-borne bacteria with unprecedented accuracy, says food science professor Martin Wiedmann.

The standard method of tracing food-borne illness involves breaking up the DNA of bacteria samples into smaller pieces and analyzing their banding patterns.

But scientists often find that different strains of bacteria have common DNA fingerprints that are too genetically similar to be able to differentiate between them, making it difficult to establish whether the salmonella that made one person sick was the same salmonella that infected another person. This was the case in a salmonella outbreak linked to salami made with contaminated black and red pepper that included 272 cases in 44 states between July 2009 and April 2010.

To surmount this challenge, Wiedmann adopted a genomic approach.

By sequencing the genome of 47 samples of the bacteria -- 20 that had been collected from human sources during the outbreak, and 27 control samples collected from human, food, animal and environmental sources before the outbreak -- Wiedmann and his team were able to rapidly discriminate between outbreak-related cases and non-outbreak related cases, isolating four samples believed to be connected to the pepper contamination.

In the process of doing so, he also found other links: A Salmonella strain that led to a nationwide recall of pistachio nuts in 2009 turned up in samples from four people -- only one of whom had reported eating pistachios.

Other connected cases suggested smaller outbreaks of which officials had been previously unaware.

"The use of genome sequencing methods to investigate outbreaks of food-borne bacterial diseases is relatively new, and holds great promise as it can help to identify the temporal, geographical and evolutionary origin of an outbreak," Wiedmann said. "In particular, full genome sequence data may help to identify small outbreaks that may not be easily detected with lower resolution subtyping approaches."

Wiedmann, research associate Henk den Bakker and other lab members developed the single nucleotide polymorphism (SNP) test that is specific to the 2009 pepper-associated outbreak with the help of researchers at Life Technologies Corp. They also collaborated with researchers at Washington State University and departments of health in New York City and New York state.

A similar approach has previously been used in hospital settings to trace pathogenic bacteria such as methicillin-resistant Staphylococcus aureus, but this is its first application for food-borne illness.

Wiedmann said he is continuing to perfect the method and use it to test other types of bacteria. The U.S. Food and Drug Administration and other agencies are also starting to use similar approaches.

Joe Schwartz | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>