Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Test Can Precisely Pinpoint Food Pathogens

27.10.2011
With salmonella-tainted ground turkey sickening more than 100 people and listeria-contaminated cantaloupes killing 15 this year, the ability to detect outbreaks of food-borne illness and determine their sources has become a top public health priority.

A new approach, reported online Oct. 14 in the journal Applied and Environmental Microbiology by a collaborative team led by Cornell University scientists, will enable government agencies and food companies to pinpoint the exact nature and origin of food-borne bacteria with unprecedented accuracy, says food science professor Martin Wiedmann.

The standard method of tracing food-borne illness involves breaking up the DNA of bacteria samples into smaller pieces and analyzing their banding patterns.

But scientists often find that different strains of bacteria have common DNA fingerprints that are too genetically similar to be able to differentiate between them, making it difficult to establish whether the salmonella that made one person sick was the same salmonella that infected another person. This was the case in a salmonella outbreak linked to salami made with contaminated black and red pepper that included 272 cases in 44 states between July 2009 and April 2010.

To surmount this challenge, Wiedmann adopted a genomic approach.

By sequencing the genome of 47 samples of the bacteria -- 20 that had been collected from human sources during the outbreak, and 27 control samples collected from human, food, animal and environmental sources before the outbreak -- Wiedmann and his team were able to rapidly discriminate between outbreak-related cases and non-outbreak related cases, isolating four samples believed to be connected to the pepper contamination.

In the process of doing so, he also found other links: A Salmonella strain that led to a nationwide recall of pistachio nuts in 2009 turned up in samples from four people -- only one of whom had reported eating pistachios.

Other connected cases suggested smaller outbreaks of which officials had been previously unaware.

"The use of genome sequencing methods to investigate outbreaks of food-borne bacterial diseases is relatively new, and holds great promise as it can help to identify the temporal, geographical and evolutionary origin of an outbreak," Wiedmann said. "In particular, full genome sequence data may help to identify small outbreaks that may not be easily detected with lower resolution subtyping approaches."

Wiedmann, research associate Henk den Bakker and other lab members developed the single nucleotide polymorphism (SNP) test that is specific to the 2009 pepper-associated outbreak with the help of researchers at Life Technologies Corp. They also collaborated with researchers at Washington State University and departments of health in New York City and New York state.

A similar approach has previously been used in hospital settings to trace pathogenic bacteria such as methicillin-resistant Staphylococcus aureus, but this is its first application for food-borne illness.

Wiedmann said he is continuing to perfect the method and use it to test other types of bacteria. The U.S. Food and Drug Administration and other agencies are also starting to use similar approaches.

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>