Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test may improve cervical cancer detection

23.11.2012
Routine smear tests have considerably reduced the number of cases of cervical cancer, but despite intensive screening 250 women in Sweden still die from the disease every year. Researchers at Sahlgrenska Academy, University of Gothenburg, Sweden, have developed new methods of minimising the number of missed cases and making diagnosis more reliable.
Since the introduction of organised screening in Sweden in the 1960s, the number of women being diagnosed with and succumbing to cervical cancer has fallen dramatically. Screening, where a sample of cells is collected from the cervix and examined under an optical microscope, detects early cell changes so that they can be treated before they cause cancer.

However, despite intensive screening 250 women still die from cervical cancer each year in Sweden, and a further 500 develop the disease.

The sensitivity of the current test is low, which means that cell samples must be taken at least every three years. A large number of tests must also be repeated because of unreliable results – something which causes anxiety among patients and additional costs for the health service.
Researchers at Sahlgrenska Academy, University of Gothenburg have now developed a complementary test capable of minimising the number of missed cancer cases.
"Around 70 per cent of all cervical cancer cases are caused by two specific virus types, known as HPV16 and HPV18. We have developed a method that identifies proteins of these oncogenic viruses in cells, enabling a more objective interpretation of the test results," explains Maria Lidqvist, a doctoral student, who presents the method in her thesis.

"This method can hopefully produce a more reliable diagnosis in uncertain cases and reduce the number of missed cancer cases, as well as the number of women who have to be re-called because of cell samples that are difficult to interpret."

The research behind this method has been financed by the Swedish Research Council and conducted at Sahlgrenska Academy, University of Gothenburg, in collaboration with Fujirebio Diagnostics AB in Gothenburg.

Contact:
Maria Lidqvist, doctoral student at the Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
+46 (0)31-857032
+46 (0)70-6013883
Maria.lidqvist@fdab.com

Supervisors:
Jan Holmgren, +46 (0)31-7866205,
Christian Fermér, Fujirebio Diagnostics AB, +46 (0)31-857037

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>