Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test may improve cervical cancer detection

23.11.2012
Routine smear tests have considerably reduced the number of cases of cervical cancer, but despite intensive screening 250 women in Sweden still die from the disease every year. Researchers at Sahlgrenska Academy, University of Gothenburg, Sweden, have developed new methods of minimising the number of missed cases and making diagnosis more reliable.
Since the introduction of organised screening in Sweden in the 1960s, the number of women being diagnosed with and succumbing to cervical cancer has fallen dramatically. Screening, where a sample of cells is collected from the cervix and examined under an optical microscope, detects early cell changes so that they can be treated before they cause cancer.

However, despite intensive screening 250 women still die from cervical cancer each year in Sweden, and a further 500 develop the disease.

The sensitivity of the current test is low, which means that cell samples must be taken at least every three years. A large number of tests must also be repeated because of unreliable results – something which causes anxiety among patients and additional costs for the health service.
Researchers at Sahlgrenska Academy, University of Gothenburg have now developed a complementary test capable of minimising the number of missed cancer cases.
"Around 70 per cent of all cervical cancer cases are caused by two specific virus types, known as HPV16 and HPV18. We have developed a method that identifies proteins of these oncogenic viruses in cells, enabling a more objective interpretation of the test results," explains Maria Lidqvist, a doctoral student, who presents the method in her thesis.

"This method can hopefully produce a more reliable diagnosis in uncertain cases and reduce the number of missed cancer cases, as well as the number of women who have to be re-called because of cell samples that are difficult to interpret."

The research behind this method has been financed by the Swedish Research Council and conducted at Sahlgrenska Academy, University of Gothenburg, in collaboration with Fujirebio Diagnostics AB in Gothenburg.

Contact:
Maria Lidqvist, doctoral student at the Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg
+46 (0)31-857032
+46 (0)70-6013883
Maria.lidqvist@fdab.com

Supervisors:
Jan Holmgren, +46 (0)31-7866205,
Christian Fermér, Fujirebio Diagnostics AB, +46 (0)31-857037

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Fiber optic biosensor-integrated microfluidic chip to detect glucose levels
29.04.2016 | The Optical Society

nachricht Got good fat?
27.04.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>