Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test could identify smokers at risk of emphysema

07.04.2010
CT scans can detect differences in lung blood flow patterns, which identify smokers most at risk of emphysema

Using CT scans to measure blood flow in the lungs of people who smoke may offer a way to identify which smokers are most at risk of emphysema before the disease damages and eventually destroys areas of the lungs, according to a University of Iowa study.

The study found that smokers who have very subtle signs of emphysema, but still have normal lung function, have very different blood flow patterns in their lungs compared to non-smokers and smokers without signs of emphysema.

This difference could be used to identify smokers at increased risk of emphysema and allow for early intervention. The findings appear this week in the Early Edition of the Proceedings of the National Academy of Sciences.

"We have developed a new tool to detect early emphysema-related changes that occur in smokers who are susceptible to the disease," said lead study author Eric Hoffman, Ph.D., UI professor of radiology, internal medicine and biomedical engineering. "Our discovery may also help researchers understand the underlying causes of this disease and help distinguish this type of emphysema from other forms of chronic obstructive pulmonary disease. This type of CT scan could even be a tool to test the effectiveness of new therapies by looking at the changes in lung blood flow."

As many as 24 million Americans have chronic obstructive pulmonary disease (COPD) -- a group of serious lung diseases that includes emphysema -- and COPD is the fourth leading cause of death nationwide. Because COPD is a group of different diseases, identifying more effective treatments may hinge on distinguishing between these diseases and targeting them separately.

The team used multi-detector row CT imaging to measure blood flow patterns in the lungs of 41 study participants -- 17 non-smokers and 24 smokers. All the participants had normal lung function, but 12 of the smokers had very subtle signs of emphysema. The CT scans showed that these 12 individuals had the most disrupted patterns of blood flow compared to the other participants.

The findings also support the idea that abnormal blood flow occurs before emphysema develops.

"Although the underlying causes of emphysema are not well understood, smoking increases the risk of developing the disease," Hoffman said. "Our study suggests that some smokers have an abnormal response to inflammation in their lungs; instead of sending more blood to the inflamed areas to help repair the damage, blood flow is turned off and the inflamed areas deteriorate."

The cellular pathway that turns off blood flow is helpful when an area of the lung has become permanently blocked and cannot be rescued. In that case, the lung "optimizes gas exchange" and stops supplying the area with blood. However, lung inflammation caused by smoking can be resolved and resultant damage repaired by increased blood flow, which brings oxygen and helpful cellular components to the site of injury.

This study suggests that the ability to distinguish when to turn off or when to ramp up blood flow is defective in some people -- probably due to genetic differences. If this genetic difference is coupled with smoking, which increases lung inflammation, that could increase the risk of developing emphysema.

In addition to Hoffman, the UI team included Sara Alford, a student in the Medical Scientist Training Program and first author of the study, Edwin van Beek, M.D., Ph.D., professor of radiology, and Geoffrey McLennan, M.D., Ph.D., UI professor of internal medicine, radiology and biomedical engineering.

Hoffman and McLennan are founders and shareholders of VIDA Diagnostics, a company commercializing lung-imaging software derived from laboratory research.

The study was funded by a grant from the National Institutes of Health.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>