Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test could identify smokers at risk of emphysema

07.04.2010
CT scans can detect differences in lung blood flow patterns, which identify smokers most at risk of emphysema

Using CT scans to measure blood flow in the lungs of people who smoke may offer a way to identify which smokers are most at risk of emphysema before the disease damages and eventually destroys areas of the lungs, according to a University of Iowa study.

The study found that smokers who have very subtle signs of emphysema, but still have normal lung function, have very different blood flow patterns in their lungs compared to non-smokers and smokers without signs of emphysema.

This difference could be used to identify smokers at increased risk of emphysema and allow for early intervention. The findings appear this week in the Early Edition of the Proceedings of the National Academy of Sciences.

"We have developed a new tool to detect early emphysema-related changes that occur in smokers who are susceptible to the disease," said lead study author Eric Hoffman, Ph.D., UI professor of radiology, internal medicine and biomedical engineering. "Our discovery may also help researchers understand the underlying causes of this disease and help distinguish this type of emphysema from other forms of chronic obstructive pulmonary disease. This type of CT scan could even be a tool to test the effectiveness of new therapies by looking at the changes in lung blood flow."

As many as 24 million Americans have chronic obstructive pulmonary disease (COPD) -- a group of serious lung diseases that includes emphysema -- and COPD is the fourth leading cause of death nationwide. Because COPD is a group of different diseases, identifying more effective treatments may hinge on distinguishing between these diseases and targeting them separately.

The team used multi-detector row CT imaging to measure blood flow patterns in the lungs of 41 study participants -- 17 non-smokers and 24 smokers. All the participants had normal lung function, but 12 of the smokers had very subtle signs of emphysema. The CT scans showed that these 12 individuals had the most disrupted patterns of blood flow compared to the other participants.

The findings also support the idea that abnormal blood flow occurs before emphysema develops.

"Although the underlying causes of emphysema are not well understood, smoking increases the risk of developing the disease," Hoffman said. "Our study suggests that some smokers have an abnormal response to inflammation in their lungs; instead of sending more blood to the inflamed areas to help repair the damage, blood flow is turned off and the inflamed areas deteriorate."

The cellular pathway that turns off blood flow is helpful when an area of the lung has become permanently blocked and cannot be rescued. In that case, the lung "optimizes gas exchange" and stops supplying the area with blood. However, lung inflammation caused by smoking can be resolved and resultant damage repaired by increased blood flow, which brings oxygen and helpful cellular components to the site of injury.

This study suggests that the ability to distinguish when to turn off or when to ramp up blood flow is defective in some people -- probably due to genetic differences. If this genetic difference is coupled with smoking, which increases lung inflammation, that could increase the risk of developing emphysema.

In addition to Hoffman, the UI team included Sara Alford, a student in the Medical Scientist Training Program and first author of the study, Edwin van Beek, M.D., Ph.D., professor of radiology, and Geoffrey McLennan, M.D., Ph.D., UI professor of internal medicine, radiology and biomedical engineering.

Hoffman and McLennan are founders and shareholders of VIDA Diagnostics, a company commercializing lung-imaging software derived from laboratory research.

The study was funded by a grant from the National Institutes of Health.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>