Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test announced for major killer of lung transplant patients

03.01.2011
High stem cell count after transplant predicts debilitating syndrome, U-M research finds

A lung transplant can mean a new chance at life. But many who receive one develop a debilitating, fatal condition that causes scar tissue to build up in the lungs and chokes off the ability to breathe.

University of Michigan researchers hope a new diagnostic tool they developed to predict bronchiolitis obliterans syndrome (BOS) will allow doctors to intervene earlier and, ultimately, to provide life-saving treatments.

BOS is the leading cause of death for those who survive one year after lung transplantation and more than half of recipients will develop BOS within five years. There is currently no cure.

Vibha Lama, M.D., M.S., an assistant professor of pulmonary and critical care medicine at the University of Michigan Medical School, led a team of U-M researchers who recently discovered that patients who had a high number of stem cells in their lungs six months after transplantation were much more likely to develop BOS than those with lower counts.

"Our study provides the first indication of the important role these cells play in both human repair and disease," Lama says. "It's very important from the clinical perspective because we didn't previously have any strong biomarkers for BOS."

The findings were recently published online ahead of print publication in the American Journal of Respiratory and Critical Care Medicine.

The translational study also highlights the importance of the lab-to-bedside cooperation of basic and clinical research, Lama says.

While the exact relationship between the mesenchymal stromal cells and BOS remains unclear, doctors know that most of the cells originate with the donor and not the recipient. Spikes in cell counts are seen shortly after transplantation as the body responds to the injury; those levels usually taper off, but a second rise of cell counts after about six months is linked to a patient's likelihood of developing BOS.

In 2007, Lama and her colleagues published another discovery about the stem cells, revealing that the cells reside in the transplanted organs, independent of their more commonly known association with bone marrow. That study led to the further exploration of the cells' involvement with chronic transplant rejection.

The new findings also have the potential to spur research that will help people suffering from other types of lung disease, such as idiopathic pulmonary fibrosis, known as IPF.

Having the biomarker will also allow researchers to readily identify a population of patients ideal for testing new drug interventions and therapies.

"By the time we usually diagnose BOS, there's already been a huge decline in lung function," Lama says. "If we can find the disease early, we can potentially do something about it."

Methodology: Mesenchymal stromal cells were measured in 405 bronchoalveolar lavage fluid samples obtained from 162 lung transplant recipients and patients were observed for BOS development.

Additional U-M authors: Linda Badri; Susan Murray, Sc.D.; Lyrica X. Liu; Natalie M. Walker; Andrew Flint, M.D.; Anish Wadhwa, M.D.; Kevin Chan, M.D.; Galen B. Toews, M.D.; David J. Pinksy, M.D.; Fernando J. Martinez, M.D., M.S.

Funding: The research was supported by grants from the National Institutes of Health, American Thoracic Society and Scleroderma Research Foundation.

Dr. Lama also wishes to acknowledge the generous research support of Brian and Mary Campbell, and Elizabeth Campbell Carr.

Disclosure: U-M is filling for patent protection for this test and is actively engaged in finding a commercial partner who can help bring the developments to market.

Citation: American Journal of Respiratory and Critical Care Medicine 2010, doi:10.1164/rccm.201005-0742OC

Resources: U-M Pulmonary & Critical Care Medicine, med.umich.edu/intmed/pulmonary

Ian Demsky | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>