Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test announced for major killer of lung transplant patients

03.01.2011
High stem cell count after transplant predicts debilitating syndrome, U-M research finds

A lung transplant can mean a new chance at life. But many who receive one develop a debilitating, fatal condition that causes scar tissue to build up in the lungs and chokes off the ability to breathe.

University of Michigan researchers hope a new diagnostic tool they developed to predict bronchiolitis obliterans syndrome (BOS) will allow doctors to intervene earlier and, ultimately, to provide life-saving treatments.

BOS is the leading cause of death for those who survive one year after lung transplantation and more than half of recipients will develop BOS within five years. There is currently no cure.

Vibha Lama, M.D., M.S., an assistant professor of pulmonary and critical care medicine at the University of Michigan Medical School, led a team of U-M researchers who recently discovered that patients who had a high number of stem cells in their lungs six months after transplantation were much more likely to develop BOS than those with lower counts.

"Our study provides the first indication of the important role these cells play in both human repair and disease," Lama says. "It's very important from the clinical perspective because we didn't previously have any strong biomarkers for BOS."

The findings were recently published online ahead of print publication in the American Journal of Respiratory and Critical Care Medicine.

The translational study also highlights the importance of the lab-to-bedside cooperation of basic and clinical research, Lama says.

While the exact relationship between the mesenchymal stromal cells and BOS remains unclear, doctors know that most of the cells originate with the donor and not the recipient. Spikes in cell counts are seen shortly after transplantation as the body responds to the injury; those levels usually taper off, but a second rise of cell counts after about six months is linked to a patient's likelihood of developing BOS.

In 2007, Lama and her colleagues published another discovery about the stem cells, revealing that the cells reside in the transplanted organs, independent of their more commonly known association with bone marrow. That study led to the further exploration of the cells' involvement with chronic transplant rejection.

The new findings also have the potential to spur research that will help people suffering from other types of lung disease, such as idiopathic pulmonary fibrosis, known as IPF.

Having the biomarker will also allow researchers to readily identify a population of patients ideal for testing new drug interventions and therapies.

"By the time we usually diagnose BOS, there's already been a huge decline in lung function," Lama says. "If we can find the disease early, we can potentially do something about it."

Methodology: Mesenchymal stromal cells were measured in 405 bronchoalveolar lavage fluid samples obtained from 162 lung transplant recipients and patients were observed for BOS development.

Additional U-M authors: Linda Badri; Susan Murray, Sc.D.; Lyrica X. Liu; Natalie M. Walker; Andrew Flint, M.D.; Anish Wadhwa, M.D.; Kevin Chan, M.D.; Galen B. Toews, M.D.; David J. Pinksy, M.D.; Fernando J. Martinez, M.D., M.S.

Funding: The research was supported by grants from the National Institutes of Health, American Thoracic Society and Scleroderma Research Foundation.

Dr. Lama also wishes to acknowledge the generous research support of Brian and Mary Campbell, and Elizabeth Campbell Carr.

Disclosure: U-M is filling for patent protection for this test and is actively engaged in finding a commercial partner who can help bring the developments to market.

Citation: American Journal of Respiratory and Critical Care Medicine 2010, doi:10.1164/rccm.201005-0742OC

Resources: U-M Pulmonary & Critical Care Medicine, med.umich.edu/intmed/pulmonary

Ian Demsky | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>