Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows promise against resistant staph infections

04.05.2009
Particles infused with nitric oxide are antibacterial and promote wound healing

Scientists at Albert Einstein College of Medicine of Yeshiva University have combined their revolutionary new drug-delivery system with a powerful antimicrobial agent to treat potentially deadly drug-resistant staph infections in mice. The study is published this month in the online version of the Journal of Investigative Dermatology.

Staphylococcus aureus bacteria cause the majority of superficial and invasive skin infections, resulting in more than 11 million outpatient/emergency room visits and 464,000 hospital admissions annually in the U.S. Staph are also notorious for infecting patients while they're in the hospital for other reasons. Staph infections can be deadly if the bacteria invade the bloodstream, heart, lungs, or urinary tract. As more strains of staph become resistant to common antibiotics, the need for new treatments has become urgent.

The drug-delivery system, developed by Einstein scientists, consists of biocompatible nanoparticles — each smaller than a grain of pollen — that can carry tiny payloads of various drugs or other medically useful substances and release them in a controlled and sustained manner. In this study, the nanoparticles were designed to transport and slowly release nitric oxide (NO) gas.

The nanoparticle technology was developed by Joel M. Friedman, M.D., Ph.D., professor of physiology & biophysics and of medicine at Einstein, and his son, Adam Friedman, M.D., an incoming chief resident in the division of dermatology at Einstein. The Friedmans were co-senior authors of the study along with Joshua D. Nosanchuck, M.D., associate professor in the departments of medicine and microbiology & immunology at Einstein.

NO is produced by many cells throughout the body and has several important biological functions including killing bacteria, healing wounds, and increasing blood flow by dilating blood vessels. But harnessing NO's therapeutic potential has proven difficult. "The problem is that nitric oxide is very short-lived and, until now, methods to deliver it to targeted tissues in the proper dosages have proven elusive," says Dr. Joel Friedman.

The Friedmans solved the problem of controlled and sustained NO delivery by developing a method of generating NO from sodium nitrite within a novel nanoparticle formulation. The nanoparticles are stable when dry and resemble a fine white powder when present in large amounts.

"As the particles take on water, they loosen up and the nitric oxide slowly trickles out, releasing specific amounts of the gas — which is exactly what happens in your body," says Dr. Friedman.

The present study involved collaboration between the Friedman laboratory and Dr. Nosanchuk's laboratory. Mice whose skin was infected with methicillin-resistant Staphylococcus aureus, or MRSA, were treated topically with NO-containing nanoparticles or with nanoparticles devoid of NO. A third group received no treatment at all.

The NO-containing nanoparticles proved highly effective. After seven days, infected wounds in the group treated with the NO-containing nanoparticles were significantly improved and smaller than lesions in the two other groups. In addition, bacterial counts were significantly lower in the NO-treated group compared with the other groups, and the NO-treated group showed evidence of accelerated wound healing both visually and microscopically.

After further refining their nanoparticles, the Einstein team plans to test them in clinical trials against MRSA and other infections. Dr. Friedman is confident that the therapy will be safe for human use. "To date there have been no indication of toxicity in any of the numerous animal studies," he says.

In another potential use, Einstein scientists at the annual meeting of the American Urological Association earlier this week reported that nanoparticles carrying either NO or the drug tadalafil (Cialis) show promise as a topical treatment for erectile dysfunction.

The paper, "Antimicrobial and Healing Efficacy of Sustained Release Nitric Oxide Nanoparticles Against Staphylococcus Aureus Skin Infection," was published April 23, 2009, in the online version of the Journal of Investigative Dermatology. Lead authors of the study were Luis R. Martinez, Ph.D., an Einstein research associate, and George Han, an M.D-Ph.D. candidate at Einstein. Other Einstein contributors were Manju Chacko, Mircea Radu Mihu, Marc Jacobson, and Phil Gialanella.

Einstein has filed patent applications covering the nanoparticles and their pharmacological applications for delivering nitric oxide and other compounds.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>