Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves malaria control and vaccine development

06.06.2012
A new technique that accurately determines the risk of infants in endemic countries developing clinical malaria could provide a valuable tool for evaluating new malaria prevention strategies and vaccines.
The technique could even help to understand how anti-malarial vaccine and treatment strategies act to reduce malaria, say researchers from the Walter and Eliza Hall Institute, Swiss Tropical and Public Health Institute, University of Basel and the Papua New Guinea Institute of Medical Research.

Professor Ivo Mueller from the Walter and Eliza Hall Institute's Infection and Immunity division said the research team discovered that the number of new malaria parasites that infants acquire over time is strongly linked to the risk that the child will develop clinical disease.

“It was very clear that infection with new and genetically different malaria parasites was the single biggest factor in determining the risk of an infant becoming sick from malaria, more than any other factor including age, the use of bed nets or the risk of transmission in the area. We were actually surprised by how clear the correlation was,” Professor Mueller said.

The molecular technique to genetically differentiate Plasmodium falciparum parasites was developed by Dr Ingrid Felger at the Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Switzerland. Professor Terry Speed from the Walter and Eliza Hall Institute’s Bioinformatics division helped to develop mathematical algorithms to process the data.

Dr Felger said the researchers used high-throughput screening to determine the number of genetically-distinct Plasmodium falciparum malaria parasites that acquired by Papua New Guinean children aged one to four over a period of 16 months. The research was published today in the journal Proceedings of the National Academy of Sciences of the United States of America.

“This new research tool is elegantly simple but very powerful, and easily applicable in many circumstances, without a high level of technology or training,” Dr Felger said. “We think it could have profound applications. This technology will be particularly useful for assessing ideal vaccine candidates for preventing malaria, help to develop better ways of performing future human trials of new potential malaria vaccines, and identifying the mechanism of action for existing vaccines and treatments.”

Each year more than 250 million people worldwide contract malaria, and up to one million people die. Malaria is particularly dangerous for children under five and pregnant women. Plasmodium falciparum is the most lethal of the four Plasmodium species, and is responsible for most clinical disease.

Professor Mueller said the technology is already being used in the field, recently helping to explain why people with sickle-cell anaemia are less at risk of malaria infection. He said that accurately assessing the burden of malaria parasites acquired by children in countries where the disease is endemic is invaluable.

“One of our biggest problems in developing useful vaccines, treatments and preventative strategies for malaria is reliably predicting the distribution and risk of malaria at an individual level. There is huge variation in the risk of developing clinical malaria within a community or village, or within a particular age group, and we now have an accurate way to measure this,” Professor Mueller said.

The research was supported by the Swiss National Science Foundation, National Institutes of Health and the Victorian Government.

Read the scientific paper at Proceedings of the National Academy of Sciences.

Download media release (pdf).

For further information

Liz Williams
Media and Publications Manager
Ph: +61 3 9345 2928
Mob: +61 405 279 095
Email: williams@wehi.edu.au

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>