Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves heart rhythm treatment

19.07.2012
CONFIRM study results point to a doubling of success in treating heart rhythm disorder

Researchers from UC San Diego, the University of California Los Angeles and Indiana University report having found, for the first time, that atrial fibrillation or irregular heart rhythms is caused by small electrical sources within the heart, in the form of electrical spinning tops ("rotors") or focal beats. Importantly, they found a way of detecting these key sources, then precisely targeting them for therapy that can shut them down in minutes with long lasting results.

The team, which included cardiologists, physicists and bioengineers, report the findings in the July issue of the Journal of the American College of Cardiology as the CONFIRM trial (Conventional Ablation for Atrial Fibrillation
With or Without Focal Impulse and Rotor Modulation).

Currently, many patients treated for atrial fibrillation with standard therapies will experience a recurrence due to the difficulty of finding the source of the arrhythmia. The new findings will help cardiologists better target and treat arrhythmias.

The CONFIRM study examined 107 patients with atrial fibrillation referred for a non-surgical catheter ablation procedure. During this procedure, doctors thread a wire with a metal-tipped catheter inside the body, from a vein in the groin, to apply heat to the area of the heart that is producing the arrhythmia to stop it.

In one group of patients, the team used the new technique to help perform precise burns, called Focal Impulse and Rotor Modulation (FIRM) that were aimed directly at the fundamental source of the arrhythmia – tiny electrical disturbances in the heart called rotors or focal sources that look like mini tornadoes or spinning tops.

Remarkably, this new procedure shut down atrial fibrillation or very significantly slowed it in 86 percent of patients in an average of only 2.5 minutes.

In comparison, conventional catheter procedures were performed in a second group of patients. Since this approach is less targeted, it involved hours of treatment over larger regions in the heart and often did not shut down the atrial fibrillation.

To track outcomes, patients received an implanted ECG monitor that very accurately assessed their heart rhythms over time. Researchers found that after two years, the FIRM-guided group had an 82.4 percent freedom from atrial fibrillation episodes, compared to only 44.9 percent freedom in the group that received standard therapy.

The new targeted method demonstrated an 86 percent improvement over the conventional method in the study.

"We are very excited by this trial, which for the first time shows that atrial fibrillation is maintained by small electrical hotspots, where brief FIRM guided ablation can shut down the arrhythmia and bring the heart back to a normal rhythm after only minutes of ablation," said lead author Sanjiv Narayan, MD, PhD, professor of medicine at UC San Diego Sulpizio Cardiovascular Center, director of Electrophysiology at the San Diego Veterans Affairs Medical Center and visiting professor at the UCLA Cardiac Arrhythmia Center.

"The results of this trial, with an 80 percent ablation success rate after a single procedure, are very gratifying. This is the dawn of a new phase of managing this common arrhythmia that is mechanism-based," said Kalyanam Shivkumar, MD, PhD, director of the UCLA Cardiac Arrhythmia Center, and professor of medicine and radiological sciences at UCLA.

This study also represents a successful example of technology transfer from U.S. researchers supported by U.S. research funding to a small U.S. enterprise. The science behind this work was funded by grants to Narayan from the National Institutes of Health, including a grant awarded as part of the American Recovery and Reinvestment Act, and by the Doris Duke Charitable Foundation.

These discoveries, owned by the Regents of the University of California, were then licensed to a local startup company, Topera Medical, which has recently obtained FDA clearance for the mapping system it developed (RhythmViewTM) from this early science. Narayan is a co-founder with equity interest in Topera. Wouter-Jan Rappel, PhD, holds equity interest in Topera. John Miller, MD, has received modest honoraria from Topera. Shivkumar is an unpaid advisor to Topera, and the other authors report no relationship with Topera.

Other authors included John Miller, MD, chief of electrophysiology at Indiana University; David Krummen, MD, associate professor of medicine with UC San Diego Sulpizio Cardiovascular Center and associate director of electrophysiology at the San Diego Veterans Affairs Medical Center; Wouter-Jan Rappel, PhD, University of California San Diego Department of Theoretical Biological Physics; and Paul Clopton from the San Diego Veterans Affairs Medical Center Department of Statistics.

Kim Edwards | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>