Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology improves heart rhythm treatment

19.07.2012
CONFIRM study results point to a doubling of success in treating heart rhythm disorder

Researchers from UC San Diego, the University of California Los Angeles and Indiana University report having found, for the first time, that atrial fibrillation or irregular heart rhythms is caused by small electrical sources within the heart, in the form of electrical spinning tops ("rotors") or focal beats. Importantly, they found a way of detecting these key sources, then precisely targeting them for therapy that can shut them down in minutes with long lasting results.

The team, which included cardiologists, physicists and bioengineers, report the findings in the July issue of the Journal of the American College of Cardiology as the CONFIRM trial (Conventional Ablation for Atrial Fibrillation
With or Without Focal Impulse and Rotor Modulation).

Currently, many patients treated for atrial fibrillation with standard therapies will experience a recurrence due to the difficulty of finding the source of the arrhythmia. The new findings will help cardiologists better target and treat arrhythmias.

The CONFIRM study examined 107 patients with atrial fibrillation referred for a non-surgical catheter ablation procedure. During this procedure, doctors thread a wire with a metal-tipped catheter inside the body, from a vein in the groin, to apply heat to the area of the heart that is producing the arrhythmia to stop it.

In one group of patients, the team used the new technique to help perform precise burns, called Focal Impulse and Rotor Modulation (FIRM) that were aimed directly at the fundamental source of the arrhythmia – tiny electrical disturbances in the heart called rotors or focal sources that look like mini tornadoes or spinning tops.

Remarkably, this new procedure shut down atrial fibrillation or very significantly slowed it in 86 percent of patients in an average of only 2.5 minutes.

In comparison, conventional catheter procedures were performed in a second group of patients. Since this approach is less targeted, it involved hours of treatment over larger regions in the heart and often did not shut down the atrial fibrillation.

To track outcomes, patients received an implanted ECG monitor that very accurately assessed their heart rhythms over time. Researchers found that after two years, the FIRM-guided group had an 82.4 percent freedom from atrial fibrillation episodes, compared to only 44.9 percent freedom in the group that received standard therapy.

The new targeted method demonstrated an 86 percent improvement over the conventional method in the study.

"We are very excited by this trial, which for the first time shows that atrial fibrillation is maintained by small electrical hotspots, where brief FIRM guided ablation can shut down the arrhythmia and bring the heart back to a normal rhythm after only minutes of ablation," said lead author Sanjiv Narayan, MD, PhD, professor of medicine at UC San Diego Sulpizio Cardiovascular Center, director of Electrophysiology at the San Diego Veterans Affairs Medical Center and visiting professor at the UCLA Cardiac Arrhythmia Center.

"The results of this trial, with an 80 percent ablation success rate after a single procedure, are very gratifying. This is the dawn of a new phase of managing this common arrhythmia that is mechanism-based," said Kalyanam Shivkumar, MD, PhD, director of the UCLA Cardiac Arrhythmia Center, and professor of medicine and radiological sciences at UCLA.

This study also represents a successful example of technology transfer from U.S. researchers supported by U.S. research funding to a small U.S. enterprise. The science behind this work was funded by grants to Narayan from the National Institutes of Health, including a grant awarded as part of the American Recovery and Reinvestment Act, and by the Doris Duke Charitable Foundation.

These discoveries, owned by the Regents of the University of California, were then licensed to a local startup company, Topera Medical, which has recently obtained FDA clearance for the mapping system it developed (RhythmViewTM) from this early science. Narayan is a co-founder with equity interest in Topera. Wouter-Jan Rappel, PhD, holds equity interest in Topera. John Miller, MD, has received modest honoraria from Topera. Shivkumar is an unpaid advisor to Topera, and the other authors report no relationship with Topera.

Other authors included John Miller, MD, chief of electrophysiology at Indiana University; David Krummen, MD, associate professor of medicine with UC San Diego Sulpizio Cardiovascular Center and associate director of electrophysiology at the San Diego Veterans Affairs Medical Center; Wouter-Jan Rappel, PhD, University of California San Diego Department of Theoretical Biological Physics; and Paul Clopton from the San Diego Veterans Affairs Medical Center Department of Statistics.

Kim Edwards | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>