Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for testing drugs to treat cystic fibrosis and epilepsy

27.11.2013
Researchers from the University of Southampton, in collaboration with researchers at the University of Quebec at Montreal, have developed a new microsystem for more efficient testing of pharmaceutical drugs to treat diseases such as cystic fibrosis, MG (myasthenia gravis) and epilepsy.

A large percentage of pharmaceutical drugs target ion channels, which are proteins found in a cell's membrane, that play a pivotal role in these serious disorders and that are used to test the effectiveness of new drugs.

Ion channels create tiny openings in the membrane for specific ions (atoms that are positively or negatively charged) to pass through.

Currently researchers use electrophysiology, which measures an electric current through ion channel proteins, to evaluate the effectiveness of drugs on ion channels.

However, this can be a slow and expensive process as it is typically carried out using ion channels in living cell membranes.

Now, Southampton researchers have been able to produce an ion channel without using cells, which is possible with so-called cell-free expression mixtures, and to insert the channels in a stable artificial cell membrane which should enable faster, less expensive drug testing. The key is that the cell-free expression mixture, which is known to destabilise these membranes, can actually help with incorporating the produced channels into a membrane between two microdroplets.

This combination of molecular biology and microtechnology transformed the conventional multi-day, multi-step single ion-channel electrophysiology method into a quick and economical process.

"By putting the ion channel into an artificial membrane, we only have one type of channel, no living cells and a relatively inexpensive method for testing for several of these types of channels at once," says lead author of the study Dr Maurits de Planque of the Nano Research Group in Electronics and Computer Science at the University of Southampton.

"Researchers have experimented with cell-free mixtures before, but they found that this method was not economical due to the amount of expensive biochemicals required," adds Dr de Planque. "Our proposal to develop a new platform, which uses a couple of microlitres instead of millilitres, will be a very cost-effective way of doing this, particularly when the produced channel is directly inserted in a membrane for drug testing."

Study co-author, Biological Sciences lecturer Dr Philip Williamson, from the University's Institute for Life Sciences, says: "This new technology opens up avenues for drug screening, identifying new leads and identifying off target effects. Off target effects are a major complication in the development of new drugs, and many are withdrawn from late stage clinical trials due to cardiotoxic effects arising from the inhibition of the hERG voltage gated ion channel in the heart. The hERG channel coordinates cardiac rhythm and the availability of cheap and reliable assays to identify these interactions early will help streamline the drug discovery process."

The study 'Single-channel electrophysiology of cell-free expressed ion channels by direct incorporation in lipid bilayers', which appears in the RSC journal Analyst, is in collaboration with biological scientists in the University's Institute for Life Sciences.

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC).

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>