Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique may quickly distinguish between active and latent TB

17.05.2010
An emerging technique designed to quickly distinguish between people with active and dormant tuberculosis may help health professionals diagnose the disease sooner, thereby potentially limiting early exposure to the disease, according to a study conducted by researchers at Duke University Medical Center.

"Current blood tests for tuberculosis are reasonably good at distinguishing between uninfected and infected persons, but cannot tell the whether an infected person has active, and possibly infectious, tuberculosis or has latent infection," said senior author Jason Stout, M.D., M.H.S., assistant professor of medicine at Duke University Medical Center. "Generally a culture is required to tell the difference between latent infection and active tuberculosis, but a culture usually requires weeks to deliver a result. A rapid test that could tell the difference between latent and active tuberculosis would be a major step forward."

The findings will be reported at the ATS 2010 International Conference in New Orleans.

"This pilot study explored whether using patterns in the immune response to tuberculosis could be helpful in improving rapid diagnosis of the disease," Dr. Stout said.

Dr. Stout and colleagues collected whole blood samples from 71 people belonging to one of three groups: those with active tuberculosis, those with latent tuberculosis infection, and those who were not infected with tuberculosis. After exposing the samples to pieces of the tuberculosis bacteria to stimulate an immune response, researchers measured the levels of 25 specific proteins, called cytokines, to determine the presence of a pattern that could allow them to differentiate among the three groups.

"We found that a pattern of two cytokines, called MCP-1 and IL-15, was reasonably good at differentiating between persons sick with TB and persons infected but not sick," Stout said. "In addition, a third cytokine, called IP-10, looked promising in distinguishing between uninfected persons and infected individuals."

Stout said that while previous studies identified all three cytokines as possible individual predictors of tuberculosis infection, the usefulness of the combination of MCP-1 and IL-15 was unexpected.

"These findings could lead to earlier diagnosis of active tuberculosis, which could be beneficial for both the sick person and others around her or him who might be spared from infection," Dr. Stout noted. "There is also the potential for avoiding unnecessary and potentially toxic medications in persons who are not sick with tuberculosis."

Although the initial results were promising, Dr. Stout noted the sampling for this pilot study was limited, and added that further research would be needed to determine if the results could be replicated in a larger population, "ideally a group of persons suspected of having tuberculosis."

"Future studies may also help researchers determine whether examining additional cytokines would improve on the accuracy of our results," he added.

"Multi-Cytokine Profiles After Tuberculosis Antigen Stimulation: A Search for New Biomarkers for Latent and Active Tuberculosis" (Session A93, Sunday, May 16, 1:30- 4:00 p.m., CC-Room 260-262 (Second Level), Morial Convention Center; Abstract 4463)

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>