Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique may quickly distinguish between active and latent TB

17.05.2010
An emerging technique designed to quickly distinguish between people with active and dormant tuberculosis may help health professionals diagnose the disease sooner, thereby potentially limiting early exposure to the disease, according to a study conducted by researchers at Duke University Medical Center.

"Current blood tests for tuberculosis are reasonably good at distinguishing between uninfected and infected persons, but cannot tell the whether an infected person has active, and possibly infectious, tuberculosis or has latent infection," said senior author Jason Stout, M.D., M.H.S., assistant professor of medicine at Duke University Medical Center. "Generally a culture is required to tell the difference between latent infection and active tuberculosis, but a culture usually requires weeks to deliver a result. A rapid test that could tell the difference between latent and active tuberculosis would be a major step forward."

The findings will be reported at the ATS 2010 International Conference in New Orleans.

"This pilot study explored whether using patterns in the immune response to tuberculosis could be helpful in improving rapid diagnosis of the disease," Dr. Stout said.

Dr. Stout and colleagues collected whole blood samples from 71 people belonging to one of three groups: those with active tuberculosis, those with latent tuberculosis infection, and those who were not infected with tuberculosis. After exposing the samples to pieces of the tuberculosis bacteria to stimulate an immune response, researchers measured the levels of 25 specific proteins, called cytokines, to determine the presence of a pattern that could allow them to differentiate among the three groups.

"We found that a pattern of two cytokines, called MCP-1 and IL-15, was reasonably good at differentiating between persons sick with TB and persons infected but not sick," Stout said. "In addition, a third cytokine, called IP-10, looked promising in distinguishing between uninfected persons and infected individuals."

Stout said that while previous studies identified all three cytokines as possible individual predictors of tuberculosis infection, the usefulness of the combination of MCP-1 and IL-15 was unexpected.

"These findings could lead to earlier diagnosis of active tuberculosis, which could be beneficial for both the sick person and others around her or him who might be spared from infection," Dr. Stout noted. "There is also the potential for avoiding unnecessary and potentially toxic medications in persons who are not sick with tuberculosis."

Although the initial results were promising, Dr. Stout noted the sampling for this pilot study was limited, and added that further research would be needed to determine if the results could be replicated in a larger population, "ideally a group of persons suspected of having tuberculosis."

"Future studies may also help researchers determine whether examining additional cytokines would improve on the accuracy of our results," he added.

"Multi-Cytokine Profiles After Tuberculosis Antigen Stimulation: A Search for New Biomarkers for Latent and Active Tuberculosis" (Session A93, Sunday, May 16, 1:30- 4:00 p.m., CC-Room 260-262 (Second Level), Morial Convention Center; Abstract 4463)

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>