Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique identifies first events in tumor development

30.09.2011
NIH-funded study provides insight to the earliest stages of some cancers

A novel technique that enables scientists to measure and document tumor-inducing changes in DNA is providing new insight into the earliest events involved in the formation of leukemias, lymphomas and sarcomas, and could potentially lead to the discovery of ways to stop those events.

Developed by a team of researchers at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Cancer Institute (NCI), both parts of the National Institutes of Health, and The Rockefeller University, the technology focuses on chromosomal rearrangements known as translocations. Translocations occur when a broken strand of DNA from one chromosome is erroneously joined with that of another chromosome. Sometimes these irregularities can be beneficial in that they enable the immune system to respond to a vast number of microorganisms and viruses. However, translocations can also result in tumors.

The findings are reported in the Sept. 30 issue of the journal Cell.

Translocations can take place during the course of normal cell division, when each chromosome — a single strand of DNA containing many genes — is copied verbatim to provide genetic information for the daughter cells. Sometimes, during this process, byproducts of normal metabolism or other factors can cause breaks in the DNA.

"The cell expresses specific enzymes whose primary purpose is to repair such lesions effectively, but when the enzymes mistakenly join pieces of two different chromosomes, the cell's genetic information is changed," said Rafael C. Casellas, Ph.D., senior investigator in the Genomics and Immunity Section at the NIAMS, who led the research team along with Michel C. Nussenzweig, M.D., Ph.D., from Rockefeller.

Casellas likens the phenomenon to breaking two sentences and then rejoining them incorrectly. For example, "The boy completed his homework." and "The dog went to the vet." might become "The dog completed his homework." or "The boy went to the vet." When a cell gets nonsensical information such as this, it can become deregulated and even malignant.

Scientists have known since the 1960s that recurrent translocations play a critical role in cancer. What was unclear was how these genetic abnormalities are created, since very few of them were studied, and only within the context of tumors, said Casellas. To better understand the nature of these tumor-inducing rearrangements, the authors had to create a system to visualize their appearance in normal, non-transformed cells.

The system the teams created involved introducing enzymes that recognize and cause damage at a particular sequence in the DNA into cells from mice, thereby constructing a genome where a unique site is broken continuously. The group then used a technique called polymerase chain reaction — which allows scientists to quickly amplify short sequences of DNA — to check all the sites in the genome that would get translocated to this particular break. Using this technique, they were able to examine more than 180,000 chromosomal rearrangements from 400 million white blood cells, called B cells.

Based on this large data set, the scientists were able to make several important observations about the translocation process. They learned that most of the translocations involve gene domains, rather than the space on the DNA between the genes. They also found that most translocations target active genes, with a clear bias for the beginning of the gene, as opposed to its middle or end. The team also showed that a particular enzyme that normally creates DNA breaks in B cells dramatically increases the incidence of translocations during the immune response. This feature explains the long-standing observation that more than 95 percent of human lymphomas and leukemias are of B cell origin.

"This knowledge is allowing us to understand how tumors are initiated," said Casellas. "It is the kind of information that in the near future, might help us prevent the development of cancer."

Additional support for this work was provided by Andre Nussenzweig, Ph.D., who heads the Laboratory of Genome Integrity of NCI.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the U.S. Department of Health and Human Services’ National Institutes of Health (NIH), is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases; the training of basic and clinical scientists to carry out this research; and the dissemination of information on research progress in these diseases. For more information about the NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS website at http://www.niams.nih.gov.

NCI leads the National Cancer Program and the NIH effort to dramatically reduce the burden of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website at www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Trish Reynolds | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>