Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps determine degree of muscle wasting in critically ill patients

03.09.2012
Researchers have identified a new technique that can help determine the severity of muscle loss in critically ill patients. The breakthrough could lead to new research to help prevent muscle-wasting and new therapeutic interventions to help treat critically ill patients.

The results of the study will be presented today (2 September 2012) at the European Respiratory Society's Annual Congress in Vienna.

Patients who are critically ill with multi-organ failure often have significant muscle wasting after recovering from their illness. This can delay their discharge from an intensive care unit and is a major cause of disability affecting quality of life once patients have left the hospital.

Until now, there has been no clinically useful way of measuring muscle wastage, or identifying patients who are at a high-risk of this. The researchers hypothesised that they could measure the rectus femoris, one of the four quadriceps muscles in the leg, to determine the level of muscle wasting.

63 patients were recruited to the study within 24 hours of admission to hospital. Muscle wasting was assessed using an ultrasound to measure muscle circumference of the rectus femoris. Researchers also monitored the number of failed organ systems during the patient's time in intensive care, to assess which patients were at a high risk of muscle wasting.

The researchers determined that circumference measurements of the rectus femoris area by ultra sound can objectively track muscle loss early in critical illness. They also determined that the greatest reduction in muscle circumference was seen in patients with multi-organ failure. In patients with multi-organ failure, the circumference of the rectus femoris was reduced by approximately 21.53%. This compared with an approximate reduction of 7.2% in people with single organ failure.

Lead author, Dr Zudin Puthucheary from University College London, UK, said: "Our research has determined that measuring the rectus femoris using ultrasound is a useful tool to analyse the degree of muscle wasting in critically ill patients. This is clinically relevant as it can help healthcare professionals detect those at high-risk of muscle loss and provide interventions to help improve their quality of life. It is also an important discovery for research as it can help scientists track muscle response to different interventions, so we can find new solutions to addressing this problem in our critically ill patients."

Notes to editors:

Abstract: Severity of acute critical illness determines degree of muscle wasting
Session: 74
Date and time: Sunday 2 September, 10:45-12:45
Room: Lehar 3-4
Press Office at ERS Congress in Vienna (Saturday 31st August - Wednesday 5th September 2012):

Lauren Anderson: +43 6763315356 lauren.anderson@europeanlung.org

David Sadler: +43 6767502294

Lauren Anderson | EurekAlert!
Further information:
http://www.europeanlung.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>