Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps determine degree of muscle wasting in critically ill patients

03.09.2012
Researchers have identified a new technique that can help determine the severity of muscle loss in critically ill patients. The breakthrough could lead to new research to help prevent muscle-wasting and new therapeutic interventions to help treat critically ill patients.

The results of the study will be presented today (2 September 2012) at the European Respiratory Society's Annual Congress in Vienna.

Patients who are critically ill with multi-organ failure often have significant muscle wasting after recovering from their illness. This can delay their discharge from an intensive care unit and is a major cause of disability affecting quality of life once patients have left the hospital.

Until now, there has been no clinically useful way of measuring muscle wastage, or identifying patients who are at a high-risk of this. The researchers hypothesised that they could measure the rectus femoris, one of the four quadriceps muscles in the leg, to determine the level of muscle wasting.

63 patients were recruited to the study within 24 hours of admission to hospital. Muscle wasting was assessed using an ultrasound to measure muscle circumference of the rectus femoris. Researchers also monitored the number of failed organ systems during the patient's time in intensive care, to assess which patients were at a high risk of muscle wasting.

The researchers determined that circumference measurements of the rectus femoris area by ultra sound can objectively track muscle loss early in critical illness. They also determined that the greatest reduction in muscle circumference was seen in patients with multi-organ failure. In patients with multi-organ failure, the circumference of the rectus femoris was reduced by approximately 21.53%. This compared with an approximate reduction of 7.2% in people with single organ failure.

Lead author, Dr Zudin Puthucheary from University College London, UK, said: "Our research has determined that measuring the rectus femoris using ultrasound is a useful tool to analyse the degree of muscle wasting in critically ill patients. This is clinically relevant as it can help healthcare professionals detect those at high-risk of muscle loss and provide interventions to help improve their quality of life. It is also an important discovery for research as it can help scientists track muscle response to different interventions, so we can find new solutions to addressing this problem in our critically ill patients."

Notes to editors:

Abstract: Severity of acute critical illness determines degree of muscle wasting
Session: 74
Date and time: Sunday 2 September, 10:45-12:45
Room: Lehar 3-4
Press Office at ERS Congress in Vienna (Saturday 31st August - Wednesday 5th September 2012):

Lauren Anderson: +43 6763315356 lauren.anderson@europeanlung.org

David Sadler: +43 6767502294

Lauren Anderson | EurekAlert!
Further information:
http://www.europeanlung.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>