Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps determine degree of muscle wasting in critically ill patients

03.09.2012
Researchers have identified a new technique that can help determine the severity of muscle loss in critically ill patients. The breakthrough could lead to new research to help prevent muscle-wasting and new therapeutic interventions to help treat critically ill patients.

The results of the study will be presented today (2 September 2012) at the European Respiratory Society's Annual Congress in Vienna.

Patients who are critically ill with multi-organ failure often have significant muscle wasting after recovering from their illness. This can delay their discharge from an intensive care unit and is a major cause of disability affecting quality of life once patients have left the hospital.

Until now, there has been no clinically useful way of measuring muscle wastage, or identifying patients who are at a high-risk of this. The researchers hypothesised that they could measure the rectus femoris, one of the four quadriceps muscles in the leg, to determine the level of muscle wasting.

63 patients were recruited to the study within 24 hours of admission to hospital. Muscle wasting was assessed using an ultrasound to measure muscle circumference of the rectus femoris. Researchers also monitored the number of failed organ systems during the patient's time in intensive care, to assess which patients were at a high risk of muscle wasting.

The researchers determined that circumference measurements of the rectus femoris area by ultra sound can objectively track muscle loss early in critical illness. They also determined that the greatest reduction in muscle circumference was seen in patients with multi-organ failure. In patients with multi-organ failure, the circumference of the rectus femoris was reduced by approximately 21.53%. This compared with an approximate reduction of 7.2% in people with single organ failure.

Lead author, Dr Zudin Puthucheary from University College London, UK, said: "Our research has determined that measuring the rectus femoris using ultrasound is a useful tool to analyse the degree of muscle wasting in critically ill patients. This is clinically relevant as it can help healthcare professionals detect those at high-risk of muscle loss and provide interventions to help improve their quality of life. It is also an important discovery for research as it can help scientists track muscle response to different interventions, so we can find new solutions to addressing this problem in our critically ill patients."

Notes to editors:

Abstract: Severity of acute critical illness determines degree of muscle wasting
Session: 74
Date and time: Sunday 2 September, 10:45-12:45
Room: Lehar 3-4
Press Office at ERS Congress in Vienna (Saturday 31st August - Wednesday 5th September 2012):

Lauren Anderson: +43 6763315356 lauren.anderson@europeanlung.org

David Sadler: +43 6767502294

Lauren Anderson | EurekAlert!
Further information:
http://www.europeanlung.org

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>