Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team validates potentially powerful new way to treat HER2-positive breast cancer

19.05.2014

Scientists at Cold Spring Harbor Laboratory (CSHL) today report a discovery that they hope will lead to the development of a powerful new way of treating an aggressive form of breast cancer.

The breast cancer subtype in question is commonly called "HER2-positive"; it's a subset of the disease affecting about one patient in four, in which tumor cells overexpress a signaling protein called HER2.

The blockbuster drug Herceptin is a treatment of choice for many women with HER2-positive breast cancer, but in most cases, resistance to the treatment develops within several years. The prognosis for HER2-positive breast cancer patients is worse than for those with other subtypes of the illness.

In a paper appearing online today in Nature Chemical Biology, a multi-institution team led by CSHL Professor Nicholas Tonks reports that it has found a means of inhibiting another protein, called PTP1B, whose expression is also upregulated in HER2-positive breast cancer. PTP1B has been shown to play a critical role in the development of tumors in which HER2 signaling is aberrant.

... more about:
»Biology »CSHL »Cold »HER2 »HER2-positive »Harbor »PTP1B »breast »phosphate »proteins

When they treated mice modeling HER2-positive breast cancer with a PTP1B inhibitor called MSI-1436 (also called trodusquemine), Tonks and colleagues inhibited signaling by HER2 proteins.

"The result was an extensive inhibition of tumor growth and prevention of metastasis to the lung in HER2-positive animal models of breast cancer," notes Navasona Krishnan, Ph.D., a postdoctoral investigator in the Tonks lab who performed many of the experiments and is lead author on the paper reporting the results.

Dr. Tonks discovered PTP1B some 25 years ago. It is an enzyme – one in a "superfamily" of 105 called protein tyrosine phosphatases (PTPs) -- that perform the essential biochemical task of removing phosphate groups from amino acids called tyrosines in other proteins. Adding and removing phosphate groups is one of the means by which signals are sent among proteins.

PTP1B for many years has been a target of interest among drug developers. It is well known to be a negative regulator of insulin – an antagonist of insulin signaling -- and of signaling by leptin, the hormone that helps regulate appetite. Drugs that can block or inhibit the action of PTP1B have great potential in controlling diabetes and obesity. Yet properties of the molecule -- involving both its charged active binding site and its shape – have stymied potential developers of inhibitory drugs.

The new paper by Tonks and collaborators importantly reveals an alternative binding site, called an allosteric site, that does not present the biochemical difficulties that the active, or "catalytic," binding site does. This allosteric site is a target of the candidate drug trodusquemine.

Later this year early-stage human trials will begin for the drug, a collaboration of CSHL and North Shore-Long Island Jewish Hospital. Dr. Tonks and CSHL have interests in a joint venture called DepYmed Inc., in partnership with Ohr Pharmaceutical (NasdaqCM: OHRP). The venture seeks to develop trodusquemine and related analogs.

###

Funders for the research discussed in this release include: the National Institutes of Health, Cold Spring Harbor Laboratory Cancer Center, American Diabetes Association, Brown University Research Seed Fund, and Agence Nationale de Researche.

"Targeting the disordered C terminus of PTP1B with an allosteric inhibitor" appears online ahead of print Sunday, May 18, 2014 in Nature Chemical Biology. The authors are: Navasona Krishnan, Dorothy Koveal, Daniel H. Miller, Bin Xue, Sai Dipikaa Akshinthala, Jaka Kragelj, Malene Ringkjobing Jensen, Carla-Maria Gauss, Rebecca Page, Martin Blackledge, Senthil K. Musthuswamy, Wolfgang Peti and Nicholas K. Tonks. the paper can be obtained at: http://www.nature.com/nchembio/journal/vaop/ncurrent/index.html

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu.

Peter Tarr | Eurek Alert!

Further reports about: Biology CSHL Cold HER2 HER2-positive Harbor PTP1B breast phosphate proteins

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>