Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching the neurons to meditate

08.07.2011
In the late 1990s, Jane Anderson was working as a landscape architect. That meant she didn't work much in the winter, and she struggled with seasonal affective disorder in the dreary Minnesota winter months.

She decided to try meditation and noticed a change within a month. "My experience was a sense of calmness, of better ability to regulate my emotions," she says. Her experience inspired a new study which will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science, which finds changes in brain activity after only five weeks of meditation training.

Previous studies have found that Buddhist monks, who have spent tens of thousands of hours of meditating, have different patterns of brain activity. But Anderson, who did this research as an undergraduate student together with a team of University of Wisconsin-Stout faculty and students, wanted to know if they could see a change in brain activity after a shorter period.

At the beginning of the study, each participant had an EEG, a measurement of the brain's electrical activity. They were told: "Relax with your eyes closed, and focus on the flow of your breath at the tip of your nose; if a random thought arises, acknowledge the thought and then simply let it go by gently bringing your attention back to the flow of your breath."

Then 11 people were invited to take part in meditation training, while the other 10 were told they would be trained later. The 11 were offered two half-hour sessions a week, and encouraged to practice as much as they could between sessions, but there wasn't any particular requirement for how much they should practice.

After five weeks, the researchers did an EEG on each person again. Each person had done, on average, about seven hours of training and practice. But even with that little meditation practice, their brain activity was different from the 10 people who hadn't had training yet. People who had done the meditation training showed a greater proportion of activity in the left frontal region of the brain in response to subsequent attempts to meditate. Other research has found that this pattern of brain activity is associated with positive moods.

The shift in brain activity "was clearly evident even with a small number of subjects," says Christopher Moyer, one of Anderson's coauthors at the University of Wisconsin-Stout. "If someone is thinking about trying meditation and they were thinking, 'It's too big of a commitment, it's going to take too much rigorous training before it has an effect on my mind,' this research suggests that's not the case." For those people, meditation might be worth a try, he says. "It can't hurt and it might do you a lot of good."

"I think this implies that meditation is likely to create a shift in outlook toward life," Anderson says. "It has really worked for me."

For more information about this study, please contact: Christopher A. Moyer at moyerc@uwstout.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Frontal EEG Asymmetry Associated with Positive Emotion is Produced by Very Brief Meditation Training" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>